Skip to main content
Log in

Detection of Urine C2C and Trace Element Level in Patients with Knee Osteoarthritis

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The objective is to determine the relation between severity of knee osteoarthritis (KOA) and levels of Collagen type II metabolite (C2C) and trace elements in the urine. The urine sample and knee joint films (anteroposterior and lateral) from the KOA patients and control subjects were collected. The KOA patients were divided into five groups (controls and grades I–IV) according to the Kellgren–Lawrence radiographic grading standards. Urine levels of C2C and trace elements were detected by enzyme-linked immunosorbent assay and inductively coupled plasma atomic emission spectrometry, respectively. Urine C2C levels in the KOA subjects (261.235 ± 39.944 pg/ml) were higher than those of the control group (218.341 ± 22.270 pg/ml). The Fe content in KOA groups was significantly lower than that of control group (group IV > group III > group II > group I or controls). The contents of Cu and Zn were also significantly higher in the KOA patients than in the control group (p < 0.05). However, Cr, Al, Cd, Ni, and Se levels of KOA patients were not significantly different from those of the controls (p > 0.05). Determination of the urine levels of C2C and trace elements may prove to be informative for an early diagnosis of KOA. It can also assist in the prognosis judgment of the disease and selecting an appropriate therapeutic regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, J. C., & Bassitt, D. P. (2013). Quality of life and functional capacity of elderly women with knee osteoarthritis. Einstein (Sao Paulo), 11(2), 209–215.

    Article  Google Scholar 

  2. Sasaki, E., Tsuda, E., Yamamoto, Y., Iwasaki, K., Inoue, R., Takahashi, I., et al. (2013). Serum hyaluronan levels increase with the total number of osteoarthritic joints and are strongly associated with the presence of knee and finger osteoarthritis. International Orthopaedics, 37(5), 925–930.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Conrozier, T., Poole, A. R., Ferrand, F., Mathieu, P., Vincent, F., & Piperno, M. (2008). Serum concentrations of type II collagen biomarkers (C2C, C1, 2C and CPII) suggest different pathophysiologies inpatients with hip osteoarthritis. Clinical and Experimental Rheumatology, 26, 430–436.

    CAS  PubMed  Google Scholar 

  4. Zehbe, R., Riesemeier, H., Kirkpatrick, C. J., & Brochhausen, C. (2012). Imaging of articular cartilage–data matching using X-ray tomography, SEM, FIB slicing and conventional histology. Micron, 43(10), 1060–1067.

    Article  PubMed  Google Scholar 

  5. Muehleman, C., Fogarty, D., Reinhart, B., Tzvetkov, T., Li, J., & Nesch, I. (2010). In-laboratory diffraction-enhanced X-ray imaging for articular cartilage. Clinical Anatomy, 23(5), 530–538.

    Article  PubMed  Google Scholar 

  6. Mosher, T. J., Zhang, Z., Reddy, R., Boudhar, S., Milestone, B. N., Morrison, W. B., et al. (2011). Knee articular cartilage damage in osteoarthritis: Analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology, 258(3), 832–842.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Weng, X., Liao, Q., Li, K., Li, Y., Mi, M., & Zhong, D. (2012). Screening serum biomarker of knee osteoarthritis using a phage display technique. Clinical Biochemistry, 45(4–5), 303–308.

    Article  CAS  PubMed  Google Scholar 

  8. Gonzalez-Fuentes, A. M., Green, D. M., Rossen, R. D., & Ng, B. (2010). Intra-articular hyaluronic acid increases cartilage breakdown biomarker in patients with knee osteoarthritis. Clinical Rheumatology, 29(6), 619–624.

    Article  PubMed  Google Scholar 

  9. Bakker, M. F., Verstappen, S. M., Welsing, P. M., Jacobs, J. W., Jahangier, Z. N., van der Veen, M. J., et al. (2011). The relation between cartilage biomarkers (C2C, C1,2C, CS846, and CPII) and the long-term outcome of rheumatoid arthritis patients within the CAMERA trial. Arthritis Research & Therapy, 13(3), R70.

    Article  Google Scholar 

  10. Lettry, V., Sumie, Y., Mitsuda, K., Tagami, M., Hosoya, K., Takagi, S., et al. (2010). Divergent diagnosis from arthroscopic findings and identification of CPII and C2C for detection of cartilage degradation in horses. The Japanese Journal of Veterinary Research, 57(4), 197–206.

    PubMed  Google Scholar 

  11. Hunter, D. J. (2008). Advanced imaging in osteoarthritis. Bulletin of the NYU Hospital for Joint Diseases, 66(3), 251–260.

    PubMed  Google Scholar 

  12. Nevitt, M. C., Cummings, S. R., Lane, N. E., Hochberg, M. C., Scott, J. C., Pressman, A. R., et al. (1996). Association of estrogen replacement therapy with the risk of osteoarthritis of the hip in elderly white women. Study of Osteoporotic Fractures Research Group. Archives of Internal Medicine, 156(18), 2073–2080.

    Article  CAS  PubMed  Google Scholar 

  13. Stumpfe, S. T., Pester, J. K., Steinert, S., Marintschev, I., Plettenberg, H., Aurich, M., et al. (2013). Is there a correlation between biophotonical, biochemical, histological, and visual changes in the cartilage of osteoarthritic knee-joints? Muscles, Ligaments and Tendons Journal, 3(3), 157–165.

    PubMed Central  PubMed  Google Scholar 

  14. Abrams, G. D., Frank, R. M., Fortier, L. A., & Cole, B. J. (2013). Platelet-rich plasma for articular cartilage repair. Sports Medicine and Arthroscopy Review, 21(4), 213–219.

    Article  PubMed  Google Scholar 

  15. Chlebicki, C. A., Protsenko, D. E., & Wong, B. J. (2013). Preliminary investigations on therapy thresholds for laser dosimetry, cryogen spray cooling duration, and treatment cycles for laser cartilage reshaping in the New Zealand white rabbit auricle. Lasers in Medical Science. doi:10.1007/s101013-013-1471-6.

  16. Christgau, S., Garnero, P., Fledelius, C., Moniz, C., Ensig, M., Gineyts, E., et al. (2001). Collagen type II C-telopeptide fragments as an index of cartilage degradation. Bone, 29(3), 209–215.

    Article  CAS  PubMed  Google Scholar 

  17. Horkay, F. (2012). Interactions of cartilage extracellular matrix macromolecules. Journal of Polymer Science Part B: Polymer Physics, 50(24), 1699–1705.

    Article  CAS  PubMed Central  Google Scholar 

  18. Maldonado, M., & Nam, J. (2013). The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. BioMed Research International, 2013, 284873.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Eyre, D. R., & Oguchi, H. (1980). The hydroxypyridinium crosslinks of skeletal collagens: Their measurement, properties and a proposed pathway of formation. Biochemical and Biophysical Research Communications, 92(2), 403–410.

    Article  CAS  PubMed  Google Scholar 

  20. Yang, Y. L., Sun, C., Wilhelm, M. E., Fox, L. J., Zhu, J., & Kaufman, L. J. (2011). Influence of chondroitin sulfate and hyaluronic acid on structure, mechanical properties, and glioma invasion of collagen I gels. Biomaterials, 32(31), 7932–7940.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Southern, D., Lutz, G., Bracilovic, A., West, P., Spevak, M., Camacho, N. P., et al. (2006). Histological and molecular structure characterization of annular collagen after intradiskal electrothermal annuloplasty. HSS Journal: The Musculoskeletal Journal of Hospital for Special Surgery, 2(1), 49–54.

    Article  Google Scholar 

  22. Starborg, T., Lu, Y., Kadler, K. E., & Holmes, D. F. (2008). Electron microscopy of collagen fibril structure in vitro and in vivo including three-dimensional reconstruction. Methods in Cell Biology, 88, 319–345.

    Article  CAS  PubMed  Google Scholar 

  23. Ivanova, V. P., Kovaleva, Z. V., & Krivchenko, A. I. (2009). Collagen fragment accelerates adhesion and spreading of mouse embryonic fibroblasts. Doklady Biological Sciences: Proceedings of the Academy of Sciences of the USSR, Biological Sciences Sections/Translated from Russian, 426, 302–305.

    Article  CAS  Google Scholar 

  24. Vassiliadis, E., Veidal, S. S., Barascuk, N., Mullick, J. B., Clausen, R. E., Larsen, L., et al. (2011). Measurement of matrix metalloproteinase 9-mediated collagen type III degradation fragment as a marker of skin fibrosis. BMC Dermatology, 11, 6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zivanovic, S., Rackov, L. P., Zivanovic, A., Jevtic, M., Nikolic, S., & Kocic, S. (2011). Cartilage oligomeric matrix protein—Inflammation biomarker in knee osteoarthritis. Bosnian Journal of Basic Medical Sciences/Udruzenje basicnih mediciniskih znanosti = Association of Basic Medical Sciences, 11(1), 27–32.

    CAS  PubMed  Google Scholar 

  26. Baum, T., Joseph, G. B., Karampinos, D. C., Jungmann, P. M., Link, T. M., & Bauer, J. S. (2013). Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society, 21(10), 1474–1484.

    Article  CAS  PubMed  Google Scholar 

  27. Sharif, M., Granell, R., Johansen, J., Clarke, S., Elson, C., & Kirwan, J. R. (2006). Serum cartilage oligomeric matrix protein and other biomarker profiles in tibiofemoral and patellofemoral osteoarthritis of the knee. Rheumatology (Oxford), 45(5), 522–526.

    Article  CAS  Google Scholar 

  28. van Spil, W. E., DeGroot, J., Lems, W. F., Oostveen, J. C. M., & Lafeber, F. P. J. G. (2010). Serum and urinary biochemical markers for knee and hip-osteoarthritis: A systematic review applying the consensus BIPED criteria. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society, 18(5), 605–612.

    Article  PubMed  Google Scholar 

  29. Poole, A. R., Ionescu, M., Fitzcharles, M. A., & Billinghurst, R. C. (2004). The assessment of cartilage degradation in vivo: Development of an immunoassay for the measurement in body fluids of type II collagen cleaved by collagenases. Journal of Immunological Methods, 294(1–2), 145–153.

    Article  CAS  PubMed  Google Scholar 

  30. Cahue, S., Sharma, L., Dunlop, D., Ionescu, M., Song, J., Lobanok, T., et al. (2007). The ratio of type II collagen breakdown to synthesis and its relationship with the progression of knee osteoarthritis. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society, 15(7), 819–823.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. El-Maadawy, S., Kaartinen, M. T., Schinke, T., Murshed, M., Karsenty, G., & McKee, M. D. (2003). Cartilage formation and calcification in arteries of mice lacking matrix Gla protein. Connective Tissue Research, 44(Suppl 1), 272–278.

    Article  CAS  PubMed  Google Scholar 

  32. Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. P., & Fahmi, H. (2011). Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature Reviews Rheumatology, 7(1), 33–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanhuang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, G., Chen, X., Zhang, G. et al. Detection of Urine C2C and Trace Element Level in Patients with Knee Osteoarthritis. Cell Biochem Biophys 70, 475–479 (2014). https://doi.org/10.1007/s12013-014-9943-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9943-2

Keywords

Navigation