Skip to main content

Advertisement

Log in

Research to Improve the Efficiency of Double Stereo PCR Microfluidic Chip by Passivating the Inner Surface of Steel Capillary with NOA61

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In this paper, we report the improvement of PCR microfluidic chip efficiency achieved by coating the inner surface of steel capillary microchannel with a 22-µm film of the ultraviolet-solidified NOA61 using a device invented by us. Our results indicate that with this treatment, the roughness of the inside wall of steel capillary was improved from Ra = 0.921 to Ra = 0.254. The contact angle was decreased from about 95° to 56°, and the surface hydrophobicity was also increased. The flow pressure for performing the real-time PCR in the microfluidic chip with modified surface was reduced by twofold (2.11/1) and that resulted in a substantially increased efficiency of PCR. A modification of the microchannel interior surface improved the quality of the on-chip integrated PCR procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Manz, A., Graber, N., & Widmer, H. M. (1990). Miniaturized total chemical-analysis systems: A novel concept for chemical Sensing. Sensors and Actuators B: Chemical, 1(1–6), 244–248.

    Article  CAS  Google Scholar 

  2. Manz, A., Harrison, D. J., Verpoorte, E., et al. (1993). Planar chip technology of separation system: A developing perspective in chemical monitoring. Advances in Chromatography, 33, 1–66.

    Google Scholar 

  3. Shameli, S. M., et al. (2011). Fully integrated PDMS/SU-8/quartz microfluidic chip with a novel macroporous poly dimethylsiloxane (PDMS) membrane for isoelectric focusing of proteins using whole-channel imaging detection. Electrophoresis, 32(3-4), 333–339.

    Article  CAS  PubMed  Google Scholar 

  4. Wu, J., Kodzius, R., Cao, W., & Wen, W. (2013). Extraction, amplification and detection of DNA in microfluidic chip-based assays. Microchimica Acta. doi:10.1007/s00604-013-1140-2.

    Google Scholar 

  5. Nagai, H., Murakami, Y., Morita, Y., et al. (2001). Development of a microchamber array for picoliter PCR. Analytical Chemistry, 73, 1043–1047.

    Article  CAS  PubMed  Google Scholar 

  6. Kopp, M. U., de Mello, A. J., Manz, A., et al. (1998). Chemical amplification: Continuous-flow PCR on a chip. Science, 280, 1046–1048.

    Article  CAS  PubMed  Google Scholar 

  7. Chiou, J., Matsudaira, P., Sonin, A., et al. (2001). A closed-cycle capillary polymerase chain reaction machine. Analytical Chemistry, 73, 2018–2021.

    Article  CAS  PubMed  Google Scholar 

  8. Sun, K., Yamaguchi, A., Ishida, Y., et al. (2002). A heater-integrated transparent microchannel chip for continuous-flow PCR. Sensors and Actuators B: Chemical Sensors and Materials, 84, 283–289.

    Article  CAS  Google Scholar 

  9. Obeid, P. J., & Christopoulos, T. K. (2003). Continuous-flow DNA and RNA amplification chip combined with laser-induced fluorescence detection. Analytica Chimica Acta, 494, 1–9.

    Article  CAS  Google Scholar 

  10. Iliescu, C., et al. (2012). A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics, 6(1), 016505.

    Article  PubMed Central  Google Scholar 

  11. Fu, L.-M., et al. (2013). Rapid prototyping of glass-based microfluidic chips utilizing two-pass defocused CO2 laser beam method. Microfluid Nanofluidics, 14(3-4), 479–487.

    Article  CAS  Google Scholar 

  12. Fukuba, T., Yamamoto, T., Naganuma, T., et al. (2004). Microfabricated flow-through devices for DNA amplification-towards in situ gene analysis. Chemical Engineering Journal, 101, 151–156.

    Article  CAS  Google Scholar 

  13. Polini, A., Mele, E., Sciancalepore, A. G., Girardo, S., Biasco, A., Camposeo, A., et al. (2010). Reduction of water evaporation in polymerase chain reaction microfluidic devices based on oscillating-flow. Biomicrofluidics, 4(3), 036502. doi:10.1063/1.3481776.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ramalingam, N., San, T. C., Kai, T. J., Mak, M. Y. M., & Gong, H. Q. (2009). Microfluidic devices harboring unsealed reactors for real-time isothermal helicase-dependent amplification. Microfluid Nanofluidics, 7(3), 325–336.

    Article  CAS  Google Scholar 

  15. Liying, Y., et al. (2005). Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser. Biomedical Microdevices, 7(3), 253–257.

    Article  Google Scholar 

  16. Heng, Q., et al. (2009). Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation. Microsystem Technologies, 15(7), 1027–1030.

    Article  Google Scholar 

  17. Heng, Q., et al. (2008). Hydrophilicity modification of poly (methyl methacrylate) by excimer laser ablation and irradiation. Microfluid Nanofluidics, 5(1), 139–143.

    Article  Google Scholar 

  18. Wagli, P., Homsy, A., & de Rooij, N. F. (2011). Norland optical adhesive (NOA81) microchannels with adjustable wetting behavior and high chemical resistance against a range of mid-infrared-transparent organic solvents. Sensors and Actuators B: Chemical, 156, 994–1001.

    Article  Google Scholar 

  19. Dupont, E. P., Luisier, R., & Gijs, M. A. M. (2010). NOA 63 as a UV-curable material for fabrication of microfluidic channels with native hydrophilicity. Microelectronic Engineering, 87, 1253–1255.

    Article  CAS  Google Scholar 

  20. Arayanarakool, R., Le Gac, S., & van den Berg, A. (2010). Low-temperature, simple and fast integration technique of microfluidic chips by using a UV-curable adhesive. Lab on a Chip, 10, 2115–2121.

    Article  CAS  PubMed  Google Scholar 

  21. Sollier, E., Murray, C., Maoddi, P., & Di Carlo, D. (2011). Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab on a Chip, 11, 3752–3765.

    Article  CAS  PubMed  Google Scholar 

  22. Mokkapati, VRSS, Bethge O, Hainberger, R. 2012. Microfluidic chips fabrication from UV curable adhesives for heterogeneous integration. In 62nd IEEE electronic components and technology conference (ECTC) (pp. 1965–1969).

  23. Zhang, C., & Xing, D. (2007). Miniaturized PCR chips for nucleic acid amplification and analysis: Latest advances and future trends. Nucleic Acids Research, 35(13), 4223–4237.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grant No. 51375024), Scientific-technical project of Beijing Education Committee (Grant No. KZ201210005009), and the opening foundation of the State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center (Grant No. SMFA13K06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Guo, W., Wang, C. et al. Research to Improve the Efficiency of Double Stereo PCR Microfluidic Chip by Passivating the Inner Surface of Steel Capillary with NOA61. Cell Biochem Biophys 72, 605–610 (2015). https://doi.org/10.1007/s12013-014-0508-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0508-1

Keywords

Navigation