Skip to main content
Log in

Propofol-Induced Age-Different Hypocampal Long-Term Potentiation is Associated with F-Actin Polymerization in Rats

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Elderly patients may experience a decline in cognition after a surgery performed under anesthesia. Propofol (2,6-diisopropylphenol), a common intravenous anesthetic agent, has been reported to mediate the long-term potentiation (LTP), a major form of synaptic plasticity. The present study was conducted to investigate the underlying mechanisms in young (3-month-old) and elderly (20-month-old) male rats. A decline of theta-burst stimulation (TBS)-induced LTP in the hippocampal CA1 area was found in the young rats at 72 h post-anesthesia, and this alteration almost disappeared after 2-week-recovery as compared with their age-matched control rats. On the other hand, the propofol-induced CA1 LTP reduction was persistent in the aged rats during the whole experimental process. Moreover, TBS-induced increases in CA 1 filamentous-actin (F-actin) polymerization and phospho-cofilin expression were enhanced at 72 h post-anesthesia in young rats, and this change was significantly attenuated after 2 weeks. However, in anesthetic elderly rats, the alterations in F-actin and phospho-cofilin of the CA1 region were still presented at the end of the experiments. Taken together, our results indicate that the discrepant responses between young and aged rats to propofol anesthesia may be associated with the differential polymerization of F-actin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steinmetz, J., Siersma, V., Kessing, L. V., & Rasmussen, L. S. (2013). Is postoperative cognitive dysfunction a risk factor for dementia? A cohort follow-up study. British Journal of Anaesthesia, 110(1), i92–i97.

    Article  PubMed  Google Scholar 

  2. Monk, T. G., & Price, C. C. (2011). Postoperative cognitive disorders. Current Opinion in Critical Care, 2011(17), 376–381.

    Article  Google Scholar 

  3. Rasmussen, L. S. (2006). Postoperative cognitive dysfunction: Incidence and prevention. Best Practice & Research Clinical Anaesthesiology, 2006(20), 315–330.

    Article  Google Scholar 

  4. Rasmussen, L. S., Johnson, T., Kuipers, H. M., Kristensen, D., Siersma, V. D., Vila, P., et al. (2003). Does anaesthesia cause postoperative cognitive dysfunction? A randomised study of regional versus general anaesthesia in 438 elderly patients. Acta Anaesthesiologica Scandinavica, 2003(47), 260–266.

    Article  Google Scholar 

  5. Caroni, P., Donato, F., & Muller, D. (2012). Structural plasticity upon learning: Regulation and functions. Nature Reviews Neuroscience, 2012(13), 478–490.

    Article  Google Scholar 

  6. West, P. J., Saunders, G. W., Remigio, G. J., Wilcox, K. S., & White, H. S. (2014). Antiseizure drugs differentially modulate theta-burst induced long-term potentiation in C57BL/6 mice. Epilepsia, 2014(55), 214–223.

    Article  Google Scholar 

  7. Blundon, J. A., & Zakharenko, S. S. (2008). Dissecting the components of long-term potentiation. Neuroscientist, 2008(14), 598–608.

    Article  Google Scholar 

  8. Heuss, L. T., Schnieper, P., Drewe, J., Pflimlin, E., & Beglinger, C. (2003). Safety of propofol for conscious sedation during endoscopic procedures in high-risk patients-a prospective, controlled study. American Journal of Gastroenterology, 2003(98), 1751–1757.

    Google Scholar 

  9. Sanou, J., Goodall, G., Capuron, L., Bourdalle-Badie, C., & Maurette, P. (1996). Cognitive sequelae of propofol anaesthesia. NeuroReport, 1996(7), 1130–1132.

    Article  Google Scholar 

  10. Okamoto, K., Bosch, M., & Hayashi, Y. (2009). The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: A potential molecular identity of a synaptic tag? Physiology (Bethesda)., 2009(24), 357–366.

    Article  Google Scholar 

  11. Dillon, C., & Goda, Y. (2005). The actin cytoskeleton: Integrating form and function at the synapse. Annual Review of Neuroscience, 2005(28), 25–55.

    Article  Google Scholar 

  12. Fukazawa, Y., Saitoh, Y., Ozawa, F., Ohta, Y., Mizuno, K., & Inokuchi, K. (2003). Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron, 2003(38), 447–460.

    Article  Google Scholar 

  13. Baudry, M., Kramar, E., Xu, X., Zadran, H., Moreno, S., Lynch, G., et al. (2012). Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiology of Diseases, 2012(47), 210–215.

    Article  Google Scholar 

  14. Hering, H., & Sheng, M. (2003). Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. Journal of Neuroscience, 2003(23), 11759–11769.

    Google Scholar 

  15. Sierra-Mercado, D., Dieguez, D, Jr, & Barea-Rodriguez, E. J. (2008). Brief novelty exposure facilitates dentate gyrus LTP in aged rats. Hippocampus, 2008(18), 835–843.

    Article  Google Scholar 

  16. Wei, H., Xiong, W., Yang, S., Zhou, Q., Liang, C., Zeng, B. X., et al. (2002). Propofol facilitates the development of long-term depression (LTD) and impairs the maintenance of long-term potentiation (LTP) in the CA1 region of the hippocampus of anesthetized rats. Neuroscience Letters, 2002(324), 181–184.

    Article  Google Scholar 

  17. Erasso, D. M., Camporesi, E. M., Mangar, D., & Saporta, S. (2013). Effects of isoflurane or propofol on postnatal hippocampal neurogenesis in young and aged rats. Brain Research, 2013(1530), 1–12.

    Article  Google Scholar 

  18. Le, Y., Liu, S., Peng, M., Tan, C., Liao, Q., Duan, K., et al. (2014). Aging differentially affects the loss of neuronal dendritic spine, neuroinflammation and memory impairment at rats after surgery. PLoS One, 2014(9), e106837.

    Article  Google Scholar 

  19. Li, W. W., Cheng, L. Z., Zou, Z., Tian, M. L., Zhang, H., Raya, A. D., et al. (2014). (R)-alpha-methylhistamine suppresses inhibitory neurotransmission in hippocampal CA1 pyramidal neurons counteracting propofol-induced amnesia in rats. CNS Neuroscience & Therapeutics, 2014(20), 851–859.

    Article  Google Scholar 

  20. Zhang, L., Li, Y. H., Meng, K., & Han, T. Z. (2010). Increased expression of phospho-cofilin in CA1 and subiculum areas after theta-burst stimulation of Schaffer collateral–commissural fibers in rat hippocampal slices. Chinese Journal of Physiology, 2010(53), 328–336.

    Article  Google Scholar 

  21. Chen, L. Y., Rex, C. S., Casale, M. S., Gall, C. M., & Lynch, G. (2007). Changes in synaptic morphology accompany actin signaling during LTP. Journal of Neuroscience, 2007(27), 5363–5372.

    Article  Google Scholar 

  22. Nabavi, S., Fox, R., Proulx, C. D., Lin, J. Y., Tsien, R. Y., & Malinow, R. (2014). Engineering a memory with LTD and LTP. Nature, 2014(511), 348–352.

    Article  Google Scholar 

  23. Rex, C. S., Kramar, E. A., Colgin, L. L., Lin, B., Gall, C. M., & Lynch, G. (2005). Long-term potentiation is impaired in middle-aged rats: Regional specificity and reversal by adenosine receptor antagonists. Journal of Neuroscience, 2005(25), 5956–5966.

    Article  Google Scholar 

  24. Li, S. Y., Xia, L. X., Zhao, Y. L., Yang, L., Chen, Y. L., Wang, J. T., et al. (2013). Minocycline mitigates isoflurane-induced cognitive impairment in aged rats. Brain Research, 2013(1496), 84–93.

    Article  Google Scholar 

  25. Callaway, J. K., Jones, N. C., Royse, A. G., & Royse, C. F. (2012). Sevoflurane anesthesia does not impair acquisition learning or memory in the Morris water maze in young adult and aged rats. Anesthesiology, 2012(117), 1091–1101.

    Article  Google Scholar 

  26. Lee, I. H., Culley, D. J., Baxter, M. G., Xie, Z., Tanzi, R. E., & Crosby, G. (2008). Spatial memory is intact in aged rats after propofol anesthesia. Anesthesia and Analgesia, 2008(107), 1211–1215.

    Article  Google Scholar 

  27. Diogenes, M. J., Costenla, A. R., Lopes, L. V., Jeronimo-Santos, A., Sousa, V. C., Fontinha, B. M., et al. (2011). Enhancement of LTP in aged rats is dependent on endogenous BDNF. Neuropsychopharmacology, 2011(36), 1823–1836.

    Article  Google Scholar 

  28. Oscarsson, A., Massoumi, R., Sjolander, A., & Eintrei, C. (2001). Reorganization of actin in neurons after propofol exposure. Acta Anaesthesiologica Scandinavica, 2001(45), 1215–1220.

    Article  Google Scholar 

  29. Oscarsson, A., Juhas, M., Sjolander, A., & Eintrei, C. (2007). The effect of propofol on actin, ERK-1/2 and GABAA receptor content in neurones. Acta Anaesthesiologica Scandinavica, 2007(51), 1184–1189.

    Article  Google Scholar 

  30. Flynn, K. C., Hellal, F., Neukirchen, D., Jacob, S., Tahirovic, S., Dupraz, S., et al. (2012). ADF/cofilin-mediated actin retrograde flow directs neurite formation in the developing brain. Neuron, 2012(76), 1091–1107.

    Article  Google Scholar 

  31. Van Troys, M., Huyck, L., Leyman, S., Dhaese, S., Vandekerkhove, J., & Ampe, C. (2008). Ins and outs of ADF/cofilin activity and regulation. European Journal of Cell Biology, 2008(87), 649–667.

    Google Scholar 

  32. Gu, J., Lee, C. W., Fan, Y., Komlos, D., Tang, X., Sun, C., et al. (2010). ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nature Neuroscience, 2010(13), 1208–1215.

    Article  Google Scholar 

  33. Wolf, M., Zimmermann, A. M., Gorlich, A., Gurniak, C.B., Sassoe-Pognetto, M., Friauf, E., Witke, W. & Rust, M. B. (2014). ADF/Cofilin controls synaptic actin dynamics and regulates synaptic vesicle mobilization and exocytosis. Cerebral Cortex.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anshi Wu or Yun Yue.

Additional information

Mingying Li and Xuena Zhang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, X., Wu, A. et al. Propofol-Induced Age-Different Hypocampal Long-Term Potentiation is Associated with F-Actin Polymerization in Rats. Cell Biochem Biophys 71, 1059–1066 (2015). https://doi.org/10.1007/s12013-014-0309-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0309-6

Keywords

Navigation