Skip to main content
Log in

The Immunoprotective Activity of Baicalin in Mouse Model of Cecal Ligation and Puncture-Induced Sepsis

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The purpose of the study was to probe the therapeutic effect of baicalin on immunosuppression in the mouse model of cecal ligation and puncture (CLP)-induced sepsis. Mouse model was established by employing the procedure of CLP. The proliferation of T lymphocytes was measured using CFDA-SE staining and MTT method, and the proliferation index was determined to assess the proliferation status of the outer peripheral and mesenteric cells of the lymph node in various treatment groups. Griess reagent was used to detect serum NO concentrations. The CLP mice treated with baicalin showed reduced mortality and improved physical appearance as compared to the untreated animals. The locomotion and coat color of the baicalin-treated mice were normal compared to those of untreated CLP mice. Additionally, upon dissecting, only little abscess and adhesions were observed in their peritoneal cavity. The atrophy of thymus gland and spleen in the septic mice was significantly ameliorated in baicalin-treated CLP mice. Baicalin also suppressed the serum NO levels and promoted the proliferation of peripheral lymphocytes in CLP mice. Baicalin reduced the mortality in septic mice, exhibiting a thymus gland and spleen protecting effect. The results suggest that baicalin mediated its protective effect against CLP-induced sepsis by inhibiting T lymphocytes apoptosis and serum NO concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Luan, Y. Y., Dong, N., Xie, M., Xiao, X. Z., & Yao, Y. M. (2014). The significance and regulatory mechanisms of innate immune cells in the development of sepsis. Journal of Interferon and Cytokine Research, 34(1), 2–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Abraham, E., & Singer, M. (2007). Mechanisms of sepsis-induced organ dysfunction. Critical Care Medicine, 35(10), 2408–2416.

    Article  PubMed  Google Scholar 

  3. Kovacs-Simon, A., Titball, R. W., & Michell, S. L. (2011). Lipoproteins of bacterial pathogens. Infection and Immunity, 79(2), 548–561.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Huang, X., Venet, F., Chung, C. S., Lomas-Neira, J., & Ayala, A. (2007). Changes in dendritic cell function in the immune response to sepsis. Cell- & tissue-based therapy. Expert Opinion on Biological Therapy, 7(7), 929–938.

    Article  CAS  PubMed  Google Scholar 

  5. Rudiger, A., Stotz, M., & Singer, M. (2008). Cellular processes in sepsis. Swiss Medical Weekly, 138(43–44), 629–634.

    CAS  PubMed  Google Scholar 

  6. Lin, C.-W., Lo, S., Hsu, C., Hsieh, C.-H., Chang, Y.-F., Hou, B.-S., et al. (2014). T-Cell autophagy deficiency increases mortality and suppresses immune responses after Sepsis. PLoS One, 9(7), e102066.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hotchkiss, R. S., Coopersmith, C. M., & Karl, I. E. (2005). Prevention of lymphocyte apoptosis—A potential treatment of sepsis? Clinical Infectious Diseases, 41, S465–S469.

    Article  CAS  PubMed  Google Scholar 

  8. Li-Weber, M. (2009). New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin Baicalein and Baicalin. Cancer Treatment Reviews, 35(1), 57–68.

    Article  CAS  PubMed  Google Scholar 

  9. Srinivas, N. R. (2010). Baicalin, an emerging multi-therapeutic agent: pharmacodynamics, pharmacokinetics, and considerations from drug development perspectives. Xenobiotica, 40(5), 357–367.

    Article  CAS  PubMed  Google Scholar 

  10. Yu, C., Zhang, Z., Zhang, H., Zhen, Z., Calway, T., Wang, Y., et al. (2013). Pretreatment of baicalin and wogonoside with glycoside hydrolase: a promising approach to enhance anticancer potential. Oncology Reports, 30(5), 2411–2418.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Kadowaki, T., Morishita, A., Niki, T., Hara, J., Sato, M., Tani, J., et al. (2013). Galectin-9 prolongs the survival of septic mice by expanding tim-3-expressing natural killer T cells and PDCA-1 + CD11c + macrophages. Critical Care, 17, R284.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Rajkumari, N., Mathur, P., Sharma, S., Gupta, B., Bhoi, S., & Misra, M. C. (2013). Procalcitonin as a predictor of sepsis and outcome in severe trauma patients: A prospective study. Journal of Laboratory Physicians, 5(2), 100–108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Orban, C. (2012). Diagnostic criteria for sepsis in burn patients. Chirurgia (Bucur), 107(6), 697–700.

    CAS  Google Scholar 

  14. Landesberg, G., Jaffe, A. S., Gilon, D., Levin, P. D., Goodman, S., Abu-Baih, A., et al. (2014). Troponin elevation in severe sepsis and septic shock: the role of left ventricular diastolic dysfunction and right ventricular dilatation. Critical Care Medicine, 42(4), 790–800.

    Article  CAS  PubMed  Google Scholar 

  15. Babaev, M. A., Eremenko, A. A., Charchian, É. R., Kononets, P. V., Bazarov, D. V., Ziuliaeva, T. P., et al. (2014). Case of successful prevention of multiple organ dysfunctions in 74 years old patient with sepsis after Crawford surgery complicated with pleural empyema, chest wall tissues infection and osteomyelitis of ribs. Anesteziol Reanimatol, 1, 58–61.

    PubMed  Google Scholar 

  16. Kumar, A., Kethireddy, S., & Darovic, G. O. (2013). Catheter-related and infusion-related sepsis. Critical Care Clinics, 29(4), 989–1015.

    Article  PubMed  Google Scholar 

  17. Lee, I., & Hüttemann, M. (2014). Energy crisis: The role of oxidative phosphorylation in acute inflammation and sepsis. Biochimica et Biophysica Acta, 1842(9), 1579–1586.

    Article  CAS  PubMed  Google Scholar 

  18. Ayala, A., Herdon, C. D., Lehman, D. L., Ayala, C. A., & Chaudry, I. H. (1996). Differential induction of apoptosis in lymphoid tissues during sepsis: variation in onset, frequency, and the nature of the mediators. Blood, 87, 4261–4275.

    CAS  PubMed  Google Scholar 

  19. Ayala, A., Xu, Y. X., Chung, C. S., & Chaudry, I. H. (1999). Fas ligand or endotoxin contribute to thymic apoptosis during polymicrobial sepsis? Shock, 11, 211–217.

    Article  CAS  PubMed  Google Scholar 

  20. Hotchkiss, R. S., Swanson, P. E., Freeman, B. D., Tinsley, K. W., Cobb, J. P., et al. (1999). Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Critical Care Medicine, 27, 1230–1251.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, J. J., Li, X. Q., Sun, J. W., & Jin, S. H. (2014). Nitric oxide functions as a signal in ultraviolet-B-induced baicalin accumulation in Scutellaria baicalensis suspension cultures. International Journal of Molecular Sciences, 15(3), 4733–4746.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zhu, J., Wang, J., Sheng, Y., Zou, Y., Bo, L., Wang, F., et al. (2012). Baicalin improves survival in a murine model of polymicrobial sepsis via suppressing inflammatory response and lymphocyte apoptosis. PLoS One, 7(5), e35523.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Peng-Fei, L., Fu-Gen, H., Bin-Bin, D., Tian-Sheng, D., Xiang-Lin, H., & Ming-Qin, Z. (2013). Purification and antioxidant activities of baicalin isolated from the root of huangqin (Scutellaria baicalensis gcorsi). Journal of Food Science and Technology, 50(3), 615–619.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Xing, S., Wang, M., Peng, Y., Chen, D., & Li, X. (2014). Simulated gastrointestinal tract metabolism and pharmacological activities of water extract of Scutellaria baicalensis roots. Journal of Ethnopharmacology, 152(1), 183–189.

    Article  CAS  PubMed  Google Scholar 

  25. Huang, K. L., Chen, C. S., Hsu, C. W., Li, M. H., Chang, H., Tsai, S. H., et al. (2008). Therapeutic effects of baicalin on lipopolysaccharide-induced acute lung injury in rats. American Journal of Chinese Medicine, 36(2), 301–311.

    Article  CAS  PubMed  Google Scholar 

  26. Heidecke, C. D., Hensler, T., Weighardt, H., Zantl, N., Wagner, H., Siewert, J. R., et al. (1999). Selective defects of T lymphocyte function in patients with lethal intraabdominal infection. American Journal of Surgery, 178(4), 288–292.

    Article  CAS  PubMed  Google Scholar 

  27. Hotchkiss, R. S., Swanson, P. E., Freeman, B. D., Tinsley, K. W., Cobb, J. P., Matuschak, G. M., et al. (1999). Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Critical Care Medicine, 27(7), 1230–1251.

    Article  CAS  PubMed  Google Scholar 

  28. Imtiyaz, H. Z., Williams, E. P., Hickey, M. M., Patel, S. A., Durham, A. C., Yuan, L. J., et al. (2010). Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. Journal of Clinical Investigation, 120(8), 2699–2714.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Pellegrini, J. D., De, A. K., Kodys, K., Puyana, J. C., Furse, R. K., & Miller-Graziano, C. (2000). Relationships between T lymphocyte apoptosis and energy following trauma. Journal of Surgical Research, 88(2), 200–206.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchao Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Miao, P., Yu, R. et al. The Immunoprotective Activity of Baicalin in Mouse Model of Cecal Ligation and Puncture-Induced Sepsis. Cell Biochem Biophys 71, 543–547 (2015). https://doi.org/10.1007/s12013-014-0232-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0232-x

Keywords

Navigation