Skip to main content

Advertisement

Log in

Cellular Transplantation-Based Evolving Treatment Options in Spinal Cord Injury

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) often represents a condition of permanent neurologic deficit. It has been possible to understand and delineate the mechanisms contributing to loss of function following primary injury. The clinicians might hope to improve the outcome in SCI injury by designing treatment strategies that could target these secondary mechanisms of response to injury. However, the approaches like molecular targeting of the neurons or surgical interventions have yielded very limited success till date. In recent times, a great thrust is put on to the cellular transplantation mode of treatment strategies to combat SCI problems so as to gain maximum functional recovery. In this review, we discuss about the various cellular transplantation strategies that could be employed in the treatment of SCI. The success of such cellular approaches involving Schwann cells, olfactory ensheathing cells, peripheral nerve, embryonic CNS tissue and activated macrophage has been supported by a number of reports and has been detailed here. Many of these cell transplantation strategies have reached the clinical trial stages. Also, the evolving field of stem cell therapy has made it possible to contemplate the role of both embryonic stem cells and induced pluripotent stem cells to stimulate the differentiation of neurons when transplanted in SCI models. Moreover, the roles of tissue engineering techniques and synthetic biomaterials have also been explained with their beneficial and deleterious effects. Many of these cell-based therapeutic approaches have been able to cause only a little change in recovery and a combinatorial approach involving more than one strategy are now being tried out to successfully treat SCI and improve functional recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schinkel, C., Frangen, T. M., Kmetic, A., Andress, H. J., & Muhr, G. (2006). Timing of thoracic spine stabilization in trauma patients: impact on clinical course and outcome. Journal of Trauma, 61, 156–160.

    Article  PubMed  Google Scholar 

  2. Oyinbo, C. A. (2011). Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiologiae Experimentalis (Warsaw), 71, 281–299.

    Google Scholar 

  3. Profyris, C., Cheema, S. S., Zang, D., Azari, M. F., Boyle, K., & Petratos, S. (2004). Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiology of Diseases, 15, 415–436.

    Article  Google Scholar 

  4. Dumont, R. J., Okonkwo, D. O., Verma, S., Hurlbert, R. J., Boulos, P. T., Ellegala, D. B., et al. (2001). Acute spinal cord injury, part I: pathophysiologic mechanisms. Clinical Neuropharmacology, 24, 254–264.

    Article  CAS  PubMed  Google Scholar 

  5. Tator, C. H., & Fehlings, M. G. (1991). Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. Journal of Neurosurgery, 75, 15–26.

    Article  CAS  PubMed  Google Scholar 

  6. Takami, T., Oudega, M., Bates, M. L., Wood, P. M., Kleitman, N., & Bunge, M. B. (2002). Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. Journal of Neuroscience, 22, 6670–6681.

    CAS  PubMed  Google Scholar 

  7. Xu, X. M., Guenard, V., Kleitman, N., & Bunge, M. B. (1995). Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. Journal of Comparative Neurology, 351, 145–160.

    Article  CAS  PubMed  Google Scholar 

  8. Pearse, D. D., Sanchez, A. R., Pereira, F. C., Andrade, C. M., Puzis, R., Pressman, Y., et al. (2007). Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: survival, migration, axon association, and functional recovery. Glia, 55, 976–1000.

    Article  PubMed  Google Scholar 

  9. Pearse, D. D., Marcillo, A. E., Oudega, M., Lynch, M. P., Wood, P. M., & Bunge, M. B. (2004). Transplantation of Schwann cells and olfactory ensheathing glia after spinal cord injury: does pretreatment with methylprednisolone and interleukin-10 enhance recovery? Journal of Neurotrauma, 21, 1223–1239.

    Article  PubMed  Google Scholar 

  10. Bregman, B. S., Coumans, J. V., Dai, H. N., Kuhn, P. L., Lynskey, J., McAtee, M., et al. (2002). Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. Progress in Brain Research, 137, 257–273.

    Article  CAS  PubMed  Google Scholar 

  11. Guest, J. D., Rao, A., Olson, L., Bunge, M. B., & Bunge, R. P. (1997). The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Experimental Neurology, 148, 502–522.

    Article  CAS  PubMed  Google Scholar 

  12. Iwanami, A., Yamane, J., Katoh, H., Nakamura, M., Momoshima, S., Ishii, H., et al. (2005). Establishment of graded spinal cord injury model in a nonhuman primate: the common marmoset. Journal of Neuroscience Research, 80, 172–181.

    Article  CAS  PubMed  Google Scholar 

  13. Barnett, S. C., Franklin, R. J., & Blakemore, W. F. (1993). In vitro and in vivo analysis of a rat bipotential O-2A progenitor cell line containing the temperature-sensitive mutant gene of the SV40 large T antigen. European Journal of Neuroscience, 5, 1247–1260.

    Article  CAS  PubMed  Google Scholar 

  14. Barnett, S. C., & Riddell, J. S. (2004). Olfactory ensheathing cells (OECs) and the treatment of CNS injury: advantages and possible caveats. Journal of Anatomy, 204, 57–67.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Thompson, R. J., Roberts, B., Alexander, C. L., Williams, S. K., & Barnett, S. C. (2000). Comparison of neuregulin-1 expression in olfactory ensheathing cells, Schwann cells and astrocytes. Journal of Neuroscience Research, 61, 172–185.

    Article  CAS  PubMed  Google Scholar 

  16. Vincent, A. J., Taylor, J. M., Choi-Lundberg, D. L., West, A. K., & Chuah, M. I. (2005). Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes. Glia, 51, 132–147.

    Article  PubMed  Google Scholar 

  17. Kocsis, J. D., Lankford, K. L., Sasaki, M., & Radtke, C. (2009). Unique in vivo properties of olfactory ensheathing cells that may contribute to neural repair and protection following spinal cord injury. Neuroscience Letters, 456, 137–142.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bonfanti, L., Olive, S., Poulain, D. A., & Theodosis, D. T. (1992). Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience, 49, 419–436.

    Article  CAS  PubMed  Google Scholar 

  19. Wainwright, S. R., & Galea, L. A. (2013). The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus. Neural plasticity, 2013, 805497.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lee, Y. S., Hsiao, I., & Lin, V. W. (2002). Peripheral nerve grafts and aFGF restore partial hindlimb function in adult paraplegic rats. Journal of Neurotrauma, 19, 1203–1216.

    Article  PubMed  Google Scholar 

  21. Côté, M. P., Amin, A. A., Tom, V. J., & Houle, J. D. (2011). Peripheral nerve grafts support regeneration after spinal cord injury. Neurotherapeutics, 8, 294–303.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Levi, A. D., Dancausse, H., Li, X., Duncan, S., Horkey, L., & Oliviera, M. (2002). Peripheral nerve grafts promoting central nervous system regeneration after spinal cord injury in the primate. Journal of Neurosurgery, 96, 197–205.

    PubMed  Google Scholar 

  23. Wu, J. C., Huang, W. C., Chen, Y. C., Tu, T. H., Tsai, Y. A., Huang, S. F., et al. (2011). Acidic fibroblast growth factor for repair of human spinal cord injury: a clinical trial. Journal of Neurosurgery, 15, 216–227.

    PubMed  Google Scholar 

  24. Reier, P. J., Stokes, B. T., Thompson, F. J., & Anderson, P. J. (1992). Fetal cell grafts into resection and contusion/compression injuries of the rat and cat spinal cord. Experimental Neurology, 115, 177–188.

    Article  CAS  PubMed  Google Scholar 

  25. Coumans, J. V., Lin, T. T., Dai, H. N., MacArthur, L., McAtee, M., Nash, C., et al. (2001). Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. The Journal of Neuroscience, 21(23), 9334–9344.

    CAS  PubMed  Google Scholar 

  26. Reier, P. J. (2004). Cellular transplantation strategies for spinal cord injury and translational neurobiology. NeuroRx, 1, 424–451.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Thompson, F. J., Reier, P. J., Uthman, B., Mott, S., Fessler, R. G., Behrman, A., et al. (2001). Neurophysiological assessment of the feasibility and safety of neural tissue transplantation in patients with syringomyelia. Journal of Neurotrauma, 18, 931–945.

    Article  CAS  PubMed  Google Scholar 

  28. Kuhlmann, T., Wendling, U., Nolte, C., Zipp, F., Maruschak, B., Stadelmann, C., et al. (2002). Differential regulation of myelin phagocytosis by macrophages/microglia, involvement of target myelin, Fc receptors and activation by intravenous immunoglobulins. Journal of Neuroscience Research, 67, 185–190.

    Article  CAS  PubMed  Google Scholar 

  29. Rapalino, O., Lazarov-Spiegler, O., Agranov, E., Velan, G. J., Yoles, E., Fraidakis, M., et al. (1998). Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nature Medicine, 40, 814–821.

    Article  Google Scholar 

  30. Moon, L., & Bunge, M. B. (2005). From animal models to humans: strategies for promoting CNS axon regeneration and recovery of limb function after spinal cord injury. Journal of Neurologic Physical Therapy, 29, 55–69.

    Article  PubMed  Google Scholar 

  31. Popovich, P. G., Guan, Z., Wei, P., Huitinga, I., van Rooijen, N., & Stokes, B. T. (1999). Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Experimental Neurology, 158, 351–365.

    Article  CAS  PubMed  Google Scholar 

  32. Knoller, N., Auerbach, G., Fulga, V., Zelig, G., Attias, J., Bakimer, R., et al. (2005). Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. Journal of Neurosurgery, 3, 173–181.

    PubMed  Google Scholar 

  33. Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255, 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  35. Hitoshi, S., Seaberg, R. M., Koscik, C., Alexson, T., Kusunoki, S., Kanazawa, I., et al. (2004). Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes & Development, 18, 1806–1811.

    Article  CAS  Google Scholar 

  36. Miyata, T., Kawaguchi, A., Okano, H., & Ogawa, M. (2001). Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron, 31, 727–741.

    Article  CAS  PubMed  Google Scholar 

  37. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., & Kriegstein, A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature, 409, 714–720.

    Article  CAS  PubMed  Google Scholar 

  38. Temple, S. (2001). The development of neural stem cells. Nature, 414, 112–117.

    Article  CAS  PubMed  Google Scholar 

  39. Okada, Y., Matsumoto, A., Shimazaki, T., Enoki, R., Koizumi, A., Ishii, S., et al. (2008). Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell-derived neural stem/progenitor cells. Stem Cells, 26, 3086–3098.

    Article  CAS  PubMed  Google Scholar 

  40. Miura, K., Okada, Y., Aoi, T., Okada, A., Takahashi, K., Okita, K., et al. (2009). Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnology, 27, 743–745.

    Article  CAS  PubMed  Google Scholar 

  41. Windebank, A. J. (2009). Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds. Respiratory Physiology & Neurobiology, 169, 183–199.

    Article  Google Scholar 

  42. Ji, W., Hu, S., Zhou, J., Wang, G., Wang, K., & Zhang, Y. (2014). Tissue engineering is a promising method for the repair of spinal cord injuries (Review). Experimental and therapeutic medicine, 7, 523–528.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Jain, A., Kim, Y. T., McKeon, R. J., & Bellamkonda, R. V. (2006). In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials, 27, 497–504.

    Article  CAS  PubMed  Google Scholar 

  44. Cholas, R., Hsu, H. P., & Spector, M. (2012). Collagen scaffolds incorporating select therapeutic agents to facilitate a reparative response in a standardized hemiresection defect in the rat spinal cord. Tissue Engineering Part A, 18, 2158–2172.

    Article  CAS  PubMed  Google Scholar 

  45. Chen, N., Zhang, Z., Soontornworajit, B., Zhou, J., & Wang, Y. (2012). Cell adhesion on an artificial extracellular matrix using aptamer functionalized PEG hydrogels. Biomaterials, 33, 1353–1362.

    Article  CAS  PubMed  Google Scholar 

  46. McCall, J., Weidner, N., & Blesch, A. (2012). Neurotrophic factors in combinatorial approaches for spinal cord regeneration. Cell and Tissue Research, 349, 27–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Sharma, H. S. (2007). Neurotrophic factors in combination: a possible new therapeutic strategy to influence pathophysiology of spinal cord injury and repair mechanisms. Current Pharmaceutical Design, 13, 1841–1874.

    Article  CAS  PubMed  Google Scholar 

  48. Berry, A., Bindocci, E., & Alleva, E. (2012). NGF, brain and behavioral plasticity. Neural plasticity, 2012, 784040.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Allen, S. J., Watson, J. J., Shoemark, D. K., Barua, N. U., & Patel, N. K. (2013). GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacology & Therapeutics, 138, 155–175.

    Article  CAS  Google Scholar 

  50. Weishaupt, N., Li, S., Di Pardo, A., Sipione, S., & Fouad, K. (2013). Synergistic effects of BDNF and rehabilitative training on recovery after cervical spinal cord injury. Behavioural Brain Research, 239, 31–42.

    Article  CAS  PubMed  Google Scholar 

  51. Mantilla, C. B., Gransee, H. M., Zhan, W. Z., & Sieck, G. C. (2013). Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury. Experimental Neurology, 247, 101–109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Stokols, S., Sakamoto, J., Breckon, C., Holt, T., Weiss, J., & Tuszynski, M. H. (2006). Templated agarose scaffolds support linear axonal regeneration. Tissue Engineering, 12, 2777–2787.

    Article  CAS  PubMed  Google Scholar 

  53. Shumsky, J. S., Tobias, C. A., Tumolo, M., Long, W. D., Giszter, S. F., & Murray, M. (2003). Delayed transplantation of fibroblasts genetically modified to secrete BDNF and NT-3 into a spinal cord injury site is associated with limited recovery of function. Experimental Neurology, 184, 114–130.

    Article  CAS  PubMed  Google Scholar 

  54. Chen, Q., Smith, G. M., & Shine, H. D. (2008). Immune activation is required for NT-3-induced axonal plasticity in chronic spinal cord injury. Experimental Neurology, 209, 497–509.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Wang, X., Li, Y., Gao, Y., Chen, X., Yao, J., Lin, W., et al. (2013). Combined use of spinal cord-mimicking partition type scaffold architecture and neurotrophin-3 for surgical repair of completely transected spinal cord in rats. Journal of Biomaterials Science, Polymer Edition, 24, 927–939.

    Article  CAS  Google Scholar 

  56. Hara, T., Fukumitsu, H., Soumiya, H., Furukawa, Y., & Furukawa, S. (2012). Injury-induced accumulation of glial cell line-derived neurotrophic factor in the rostral part of the injured rat spinal cord. International Journal of Molecular Sciences, 13, 13484–13500.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Guo, J. S., Zeng, Y. S., Li, H. B., Huang, W. L., Liu, R. Y., Li, X. B., et al. (2007). Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury. Spinal Cord, 45, 15–24.

    Article  PubMed  Google Scholar 

  58. Foust, K. D., Flotte, T. R., Reier, P. J., & Mandel, R. J. (2008). Recombinant adeno-associated virus-mediated global anterograde delivery of glial cell line-derived neurotrophic factor to the spinal cord: comparison of rubrospinal and corticospinal tracts in the rat. Human Gene Therapy, 19, 71–82.

    Article  CAS  PubMed  Google Scholar 

  59. Morizono, K., & Chen, I. S. (2005). Targeted gene delivery by intravenous injection of retroviral vectors. Cell Cycle, 4, 854–856.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Lai Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Mc., Yuan, H., Li, Kj. et al. Cellular Transplantation-Based Evolving Treatment Options in Spinal Cord Injury. Cell Biochem Biophys 71, 1–8 (2015). https://doi.org/10.1007/s12013-014-0174-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0174-3

Keywords

Navigation