Skip to main content
Log in

The Structure, Function, and Regulation of Mycobacterium FtsZ

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

FtsZ is a widely distributed major cytoskeletal protein involved in the archaea and bacteria cell division. It is the most critical component in the division machinery and similar to tubulin in structure and function. Four major roles of FtsZ have been characterized: cell elongation, GTPase, cell division, and bacterial cytoskeleton. FtsZ subunits can be assembled into protofilaments. Mycobacteria consist of a large family of medical and environmental important bacteria, such as M. leprae, M. tuberculosis, the pathogen of leprosy, and tuberculosis. Structure, function, and regulation of mycobacteria FtsZ are summarized here, together with the implication of FtsZ as potential novel drug target for anti-tuberculosis therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FtsZ:

Filamentous temperature-sensitive mutant Z

ZipA:

Inner membrane protein A binds directly to Z-ring

FtsA:

Filamentous temperature-sensitive mutant A

ZapA:

Z-ring-associated protein

SepF:

Septum development protein

SulA:

Induction of the cell division inhibitor A

EzrA:

Negative regulator of FtsZ ring formation protein A

MinCD:

Minicell locus protein C and D

References

  1. Margolin, W. (2000). Organelle division: Self-assembling GTPase caught in the middle. Current Biology, 10, R328–R330.

    Article  PubMed  CAS  Google Scholar 

  2. Hirota, Y., & Ryter, A. (1968). Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harbor Symposia on Quantitative Biology, 33, 677–693.

    Article  PubMed  CAS  Google Scholar 

  3. Bi, E. F., & Lutkenhaus, J. (1991). FtsZ ring structure associated with division in Escherichia coli. Nature, 354, 161–164.

    Article  PubMed  CAS  Google Scholar 

  4. Chen, J. C., & Beckwith, J. (2001). FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division. Molecular Microbiology, 42, 395–413.

    Article  PubMed  Google Scholar 

  5. Addinall, S. G., & Lutkenhaus, J. (1996). FtsZ-spirals and -arcs determine the shape of the invaginating septa in some mutants of Escherichia coli. Molecular Microbiology, 22, 231–237.

    Article  PubMed  CAS  Google Scholar 

  6. Lowe, J., & Amos, L. A. (1998). Crystal structure of the bacterial cell-division protein FtsZ. Nature, 391, 203–206.

    Article  PubMed  CAS  Google Scholar 

  7. Desai, A., & Mitchison, T. J. (1997). Microtubule polymerization dynamics. Annual Review of Cell and Developmental Biology, 13, 83–117.

    Article  PubMed  CAS  Google Scholar 

  8. Nogales, E., Wolf, S. G., & Downing, K. H. (1998). Structure of the alpha beta tubulin dimer by electron crystallography. Nature, 391, 199–203.

    Article  PubMed  CAS  Google Scholar 

  9. Oliva, M. A., Trambaiolo, D., & Lowe, J. (2007). Structural insights into the conformational variability of FtsZ. Journal of Molecular Biology, 373, 1229–1242.

    Article  PubMed  CAS  Google Scholar 

  10. Vicente, M., Gomez, M. J., & Ayala, J. A. (1998). Regulation of transcription of cell division genes in the Escherichia coli dcw cluster. Cellular and Molecular Life Sciences, 54, 317–324.

    Article  PubMed  CAS  Google Scholar 

  11. Pinho, M. G., & Errington, J. (2003). Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. Molecular Microbiology, 50, 871–881.

    Article  PubMed  CAS  Google Scholar 

  12. Errington, J., Daniel, R. A., & Scheffers, D. J. (2003). Cytokinesis in bacteria. Microbiology and Molecular Biology Review, 67, 52–65. Table of contents.

    Article  CAS  Google Scholar 

  13. Aaron, M., Charbon, G., Lam, H., Schwarz, H., Vollmer, W., & Jacobs-Wagner, C. (2007). The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Molecular Microbiology, 64, 938–952.

    Article  PubMed  CAS  Google Scholar 

  14. Aarsman, M. E., Piette, A., Fraipont, C., Vinkenvleugel, T. M., Nguyen-Disteche, M., & den Blaauwen, T. (2005). Maturation of the Escherichia coli divisome occurs in two steps. Molecular Microbiology, 55, 1631–1645.

    Article  PubMed  CAS  Google Scholar 

  15. Den Blaauwen, T., Buddelmeijer, N., Aarsman, M. E., Hameete, C. M., & Nanninga, N. (1999). Timing of FtsZ assembly in Escherichia coli. Journal of Bacteriology, 181, 5167–5175.

    Google Scholar 

  16. de Pedro, M. A., Quintela, J. C., & Holtje, J. V. (1997). Murein segregation in Escherichia coli. (大肠杆菌胞质分离). Journal of Bacteriology, 179, 2823–2834.

    PubMed  Google Scholar 

  17. Varma, A., & Young, K. D. (2004). FtsZ collaborates with penicillin binding proteins to generate bacterial cell shape in Escherichia coli. Journal of Bacteriology, 186, 6768–6774.

    Article  PubMed  CAS  Google Scholar 

  18. Bramhill, D. (1997). Bacterial cell division. Annual Review of Cell and Developmental Biology, 13, 395–424.

    Article  PubMed  CAS  Google Scholar 

  19. Costa, T., Priyadarshini, R., & Jacobs-Wagner, C. (2008). Localization of PBP3 in Caulobacter crescentus is highly dynamic and largely relies on its functional transpeptidase domain. Molecular Microbiology, 70, 634–651.

    Article  PubMed  CAS  Google Scholar 

  20. Chauhan, A., Lofton, H., Maloney, E., Moore, J., Fol, M., Madiraju, M. V., et al. (2006). Interference of Mycobacterium tuberculosis cell division by Rv2719c, a cell wall hydrolase. Molecular Microbiology, 62, 132–147.

    Article  PubMed  CAS  Google Scholar 

  21. Datta, P., Dasgupta, A., Bhakta, S., & Basu, J. (2002). Interaction between FtsZ and FtsW of Mycobacterium tuberculosis. Journal of Biological Chemistry, 277, 24983–24987.

    Article  PubMed  CAS  Google Scholar 

  22. Erickson, H. P., Anderson, D. E., & Osawa, M. (2010). FtsZ in bacterial cytokinesis: Cytoskeleton and force generator all in one. Microbiology and Molecular Biology Reviews, 74, 504–528.

    Article  PubMed  CAS  Google Scholar 

  23. Romberg, L., & Mitchison, T. J. (2004). Rate-limiting guanosine 5′-triphosphate hydrolysis during nucleotide turnover by FtsZ, a prokaryotic tubulin homologue involved in bacterial cell division. Biochemistry, 43, 282–288.

    Article  PubMed  CAS  Google Scholar 

  24. Chen, Y., & Erickson, H. P. (2009). FtsZ filament dynamics at steady state: Subunit exchange with and without nucleotide hydrolysis. Biochemistry, 48, 6664–6673.

    Article  PubMed  CAS  Google Scholar 

  25. Tadros, M., Gonzalez, J. M., Rivas, G., Vicente, M., & Mingorance, J. (2006). Activation of the Escherichia coli cell division protein FtsZ by a low-affinity interaction with monovalent cations. FEBS Letters, 580, 4941–4946.

    Article  PubMed  CAS  Google Scholar 

  26. Mingorance, J., Rueda, S., Gomez-Puertas, P., Valencia, A., & Vicente, M. (2001). Escherichia coli FtsZ polymers contain mostly GTP and have a high nucleotide turnover. Molecular Microbiology, 41, 83–91.

    Article  PubMed  CAS  Google Scholar 

  27. Oliva, M. A., Cordell, S. C., & Lowe, J. (2004). Structural insights into FtsZ protofilament formation. Nature Structural and Molecular Biology, 11, 1243–1250.

    Article  PubMed  CAS  Google Scholar 

  28. Huecas, S., Schaffner-Barbero, C., Garcia, W., Yebenes, H., Palacios, J. M., Diaz, J. F., et al. (2007). The interactions of cell division protein FtsZ with guanine nucleotides. Journal of Biological Chemistry, 282, 37515–37528.

    Article  PubMed  CAS  Google Scholar 

  29. Lutkenhaus, J. F., Wolf-Watz, H., & Donachie, W. D. (1980). Organization of genes in the ftsA-envA region of the Escherichia coli genetic map and identification of a new fts locus (ftsZ). Journal of Bacteriology, 142, 615–620.

    PubMed  CAS  Google Scholar 

  30. Erickson, H. P. (1995). FtsZ, a prokaryotic homolog of tubulin? Cell, 80, 367–370.

    Article  PubMed  CAS  Google Scholar 

  31. Dong, G., Yang, Q., Wang, Q., Kim, Y. I., Wood, T. L., Osteryoung, K. W., et al. (2010). Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus. Cell, 140, 529–539.

    Article  PubMed  CAS  Google Scholar 

  32. Leung, A. K., Lucile White, E., Ross, L. J., Reynolds, R. C., DeVito, J. A., & Borhani, D. W. (2004). Structure of Mycobacterium tuberculosis FtsZ reveals unexpected, G protein-like conformational switches. Journal of Molecular Biology, 342, 953–970.

    Article  PubMed  CAS  Google Scholar 

  33. Ben-Yehuda, S., & Losick, R. (2002). Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell, 109, 257–266.

    Article  PubMed  CAS  Google Scholar 

  34. Thanedar, S., & Margolin, W. (2004). FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Current Biology, 14, 1167–1173.

    Article  PubMed  CAS  Google Scholar 

  35. Moller-Jensen, J., & Lowe, J. (2005). Increasing complexity of the bacterial cytoskeleton. Current Opinion in Cell Biology, 17, 75–81.

    Article  PubMed  CAS  Google Scholar 

  36. Goehring, N. W., & Beckwith, J. (2005). Diverse paths to midcell: Assembly of the bacterial cell division machinery. Current Biology, 15, R514–R526.

    Article  PubMed  CAS  Google Scholar 

  37. Huang, Q., Tonge, P. J., Slayden, R. A., Kirikae, T., & Ojima, I. (2007). FtsZ: A novel target for tuberculosis drug discovery. Current Topics in Medicinal Chemistry, 7, 527–543.

    Article  PubMed  CAS  Google Scholar 

  38. Mayer, F. (2003). Cytoskeletons in prokaryotes. Cell Biology International, 27, 429–438.

    Article  PubMed  CAS  Google Scholar 

  39. Amos, L. A., van den Ent, F., & Lowe, J. (2004). Structural/functional homology between the bacterial and eukaryotic cytoskeletons. Current Opinion in Cell Biology, 16, 24–31.

    Article  PubMed  CAS  Google Scholar 

  40. Gueiros-Filho, F. J., & Losick, R. (2002). A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes and Development, 16, 2544–2556.

    Article  PubMed  CAS  Google Scholar 

  41. Feucht, A., Lucet, I., Yudkin, M. D., & Errington, J. (2001). Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Molecular Microbiology, 40, 115–125.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, X., Huang, J., Mukherjee, A., Cao, C., & Lutkenhaus, J. (1997). Analysis of the interaction of FtsZ with itself, GTP, and FtsA. Journal of Bacteriology, 179, 5551–5559.

    PubMed  CAS  Google Scholar 

  43. Jensen, S. O., Thompson, L. S., & Harry, E. J. (2005). Cell division in Bacillus subtilis: FtsZ and FtsA association is Z-ring independent, and FtsA is required for efficient midcell Z-Ring assembly. Journal of Bacteriology, 187, 6536–6544.

    Article  PubMed  CAS  Google Scholar 

  44. Hale, C. A., & de Boer, P. A. (1997). Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell, 88, 175–185.

    Article  PubMed  CAS  Google Scholar 

  45. Ohashi, T., Hale, C. A., de Boer, P. A., & Erickson, H. P. (2002). Structural evidence that the P/Q domain of ZipA is an unstructured, flexible tether between the membrane and the C-terminal FtsZ-binding domain. Journal of Bacteriology, 184, 4313–4315.

    Article  PubMed  CAS  Google Scholar 

  46. Hale, C. A., Rhee, A. C., & de Boer, P. A. (2000). ZipA-induced bundling of FtsZ polymers mediated by an interaction between C-terminal domains. Journal of Bacteriology, 182, 5153–5166.

    Article  PubMed  CAS  Google Scholar 

  47. RayChaudhuri, D. (1999). ZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division. EMBO Journal, 18, 2372–2383.

    Article  PubMed  CAS  Google Scholar 

  48. Hale, C. A., & de Boer, P. A. (1999). Recruitment of ZipA to the septal ring of Escherichia coli is dependent on FtsZ and independent of FtsA. Journal of Bacteriology, 181, 167–176.

    PubMed  CAS  Google Scholar 

  49. Liu, Z., Mukherjee, A., & Lutkenhaus, J. (1999). Recruitment of ZipA to the division site by interaction with FtsZ. Molecular Microbiology, 31, 1853–1861.

    Article  PubMed  CAS  Google Scholar 

  50. Pichoff, S., & Lutkenhaus, J. (2002). Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli. EMBO Journal, 21, 685–693.

    Article  PubMed  CAS  Google Scholar 

  51. Mukherjee, A., & Lutkenhaus, J. (1999). Analysis of FtsZ assembly by light scattering and determination of the role of divalent metal cations. Journal of Bacteriology, 181, 823–832.

    PubMed  CAS  Google Scholar 

  52. Mosyak, L., Zhang, Y., Glasfeld, E., Haney, S., Stahl, M., Seehra, J., et al. (2000). The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO Journal, 19, 3179–3191.

    Article  PubMed  CAS  Google Scholar 

  53. Pla, J., Dopazo, A., & Vicente, M. (1990). The native form of FtsA, a septal protein of Escherichia coli, is located in the cytoplasmic membrane. Journal of Bacteriology, 172, 5097–5102.

    PubMed  CAS  Google Scholar 

  54. Tormo, A., Ayala, J. A., de Pedro, M. A., Aldea, M., & Vicente, M. (1986). Interaction of FtsA and PBP3 proteins in the Escherichia coli septum. Journal of Bacteriology, 166, 985–992.

    PubMed  CAS  Google Scholar 

  55. Dai, K., & Lutkenhaus, J. (1992). The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. Journal of Bacteriology, 174, 6145–6151.

    PubMed  CAS  Google Scholar 

  56. Dewar, S. J., Begg, K. J., & Donachie, W. D. (1992). Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ. Journal of Bacteriology, 174, 6314–6316.

    PubMed  CAS  Google Scholar 

  57. Ma, X., Ehrhardt, D. W., & Margolin, W. (1996). Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proceedings of National Academy of Sciences USA, 93, 12998–13003.

    Article  CAS  Google Scholar 

  58. Hu, Z., Mukherjee, A., Pichoff, S., & Lutkenhaus, J. (1999). The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proceedings of National Academy of Sciences USA, 96, 14819–14824.

    Article  CAS  Google Scholar 

  59. Erickson, H. P., Taylor, D. W., Taylor, K. A., & Bramhill, D. (1996). Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proceedings of National Academy of Sciences USA, 93, 519–523.

    Article  CAS  Google Scholar 

  60. Hamoen, L. W., Meile, J. C., de Jong, W., Noirot, P., & Errington, J. (2006). SepF, a novel FtsZ-interacting protein required for a late step in cell division. Molecular Microbiology, 59, 989–999.

    Article  PubMed  CAS  Google Scholar 

  61. Ishikawa, S., Kawai, Y., Hiramatsu, K., Kuwano, M., & Ogasawara, N. (2006). A new FtsZ-interacting protein, YlmF, complements the activity of FtsA during progression of cell division in Bacillus subtilis. Molecular Microbiology, 60, 1364–1380.

    Article  PubMed  CAS  Google Scholar 

  62. Singh, J. K., Makde, R. D., Kumar, V., & Panda, D. (2008). SepF increases the assembly and bundling of FtsZ polymers and stabilizes FtsZ protofilaments by binding along its length. Journal of Biological Chemistry, 283, 31116–31124.

    Article  PubMed  CAS  Google Scholar 

  63. Stricker, J., Maddox, P., Salmon, E. D., & Erickson, H. P. (2002). Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proceedings of National Academy of Sciences USA, 99, 3171–3175.

    Article  CAS  Google Scholar 

  64. Trusca, D., Scott, S., Thompson, C., & Bramhill, D. (1998). Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein. Journal of Bacteriology, 180, 3946–3953.

    PubMed  CAS  Google Scholar 

  65. Higashitani, A., Ishii, Y., Kato, Y., & Koriuchi, K. (1997). Functional dissection of a cell-division inhibitor, SulA, of Escherichia coli and its negative regulation by Lon. Molecular and General Genetics, 254, 351–357.

    Article  PubMed  CAS  Google Scholar 

  66. Huang, J., Cao, C., & Lutkenhaus, J. (1996). Interaction between FtsZ and inhibitors of cell division. Journal of Bacteriology, 178, 5080–5085.

    PubMed  CAS  Google Scholar 

  67. Levin, P. A., Kurtser, I. G., & Grossman, A. D. (1999). Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proceedings of National Academy of Sciences USA, 96, 9642–9647.

    Article  CAS  Google Scholar 

  68. de Boer, P. A., & Crossley, R. E. (1989). A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell, 56, 641–649.

    Article  PubMed  Google Scholar 

  69. Shapiro, L., & Losick, R. (2000). Dynamic spatial regulation in the bacterial cell. Cell, 100, 89–98.

    Article  PubMed  CAS  Google Scholar 

  70. Levin, P. A., Shim, J. J., & Grossman, A. D. (1998). Effect of minCD on FtsZ ring position and polar septation in Bacillus subtilis. Journal of Bacteriology, 180, 6048–6051.

    PubMed  CAS  Google Scholar 

  71. Bi, E., & Lutkenhaus, J. (1993). Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. Journal of Bacteriology, 175, 1118–1125.

    PubMed  CAS  Google Scholar 

  72. Levin, P. A., Schwartz, R. L., & Grossman, A. D. (2001). Polymer stability plays an important role in the positional regulation of FtsZ. Journal of Bacteriology, 183, 5449–5452.

    Article  PubMed  CAS  Google Scholar 

  73. Pichoff, S., & Lutkenhaus, J. (2001). Escherichia coli division inhibitor MinCD blocks septation by preventing Z-ring formation. Journal of Bacteriology, 183, 6630–6635.

    Article  PubMed  CAS  Google Scholar 

  74. Hu, Z., & Lutkenhaus, J. (1999). Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Molecular Microbiology, 34, 82–90.

    Article  PubMed  CAS  Google Scholar 

  75. Hayashi, I., Oyama, T., & Morikawa, K. (2001). Structural and functional studies of MinD ATPase: Implications for the molecular recognition of the bacterial cell division apparatus. EMBO Journal, 20, 1819–1828.

    Article  PubMed  CAS  Google Scholar 

  76. Hu, Z., Gogol, E. P., & Lutkenhaus, J. (2002). Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proceedings of National Academy of Sciences USA, 99, 6761–6766.

    Article  CAS  Google Scholar 

  77. Raskin, D. M., & de Boer, P. A. (1999). MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. Journal of Bacteriology, 181, 6419–6424.

    PubMed  CAS  Google Scholar 

  78. Edwards, D. H., & Errington, J. (1997). The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Molecular Microbiology, 24, 905–915.

    Article  PubMed  CAS  Google Scholar 

  79. Flardh, K., Leibovitz, E., Buttner, M. J., & Chater, K. F. (2000). Generation of a non-sporulating strain of Streptomyces coelicolor A3(2) by the manipulation of a developmentally controlled ftsZ promoter. Molecular Microbiology, 38, 737–749.

    Article  PubMed  CAS  Google Scholar 

  80. Holtzendorff, J., Marie, D., Post, A. F., Partensky, F., Rivlin, A., & Hess, W. R. (2002). Synchronized expression of ftsZ in natural Prochlorococcus populations of the Red Sea. Environmental Microbiology, 4, 644–653.

    Article  PubMed  CAS  Google Scholar 

  81. Muir, R. E., & Gober, J. W. (2001). Regulation of late flagellar gene transcription and cell division by flagellum assembly in Caulobacter crescentus. Molecular Microbiology, 41, 117–130.

    Article  PubMed  CAS  Google Scholar 

  82. Vogel, J., Axmann, I. M., Herzel, H., & Hess, W. R. (2003). Experimental and computational analysis of transcriptional start sites in the cyanobacterium Prochlorococcus MED4. Nucleic Acids Research, 31, 2890–2899.

    Article  PubMed  CAS  Google Scholar 

  83. Wagner, M. A., Zahrl, D., Rieser, G., & Koraimann, G. (2009). Growth phase- and cell division-dependent activation and inactivation of the {sigma}32 regulon in Escherichia coli. Journal of Bacteriology, 191, 1695–1702.

    Article  PubMed  CAS  Google Scholar 

  84. Romberg, L., & Levin, P. A. (2003). Assembly dynamics of the bacterial cell division protein FTSZ: Poised at the edge of stability. Annual Review of Microbiology, 57, 125–154.

    Article  PubMed  CAS  Google Scholar 

  85. Bi, E., & Lutkenhaus, J. (1990). Analysis of ftsZ mutations that confer resistance to the cell division inhibitor SulA (SfiA). Journal of Bacteriology, 172, 5602–5609.

    PubMed  CAS  Google Scholar 

  86. Sudre, P., ten Dam, G., & Kochi, A. (1992). Tuberculosis: A global overview of the situation today. Bulletin of the World Health Organization, 70, 149–159.

    PubMed  CAS  Google Scholar 

  87. Bloom, B. R., & Murray, C. J. (1992). Tuberculosis: Commentary on a reemergent killer. Science, 257, 1055–1064.

    Article  PubMed  CAS  Google Scholar 

  88. Kochi, A. (2001). The global tuberculosis situation and the new control strategy of the World Health Organization. 1991. Bulletin of the World Health Organization, 79, 71–75.

    PubMed  CAS  Google Scholar 

  89. Beuria, T. K., Santra, M. K., & Panda, D. (2005). Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling. Biochemistry, 44, 16584–16593.

    Article  PubMed  CAS  Google Scholar 

  90. Domadia, P., Swarup, S., Bhunia, A., Sivaraman, J., & Dasgupta, D. (2007). Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. Biochemical Pharmacology, 74, 831–840.

    Article  PubMed  CAS  Google Scholar 

  91. Hritz, J., Lappchen, T., & Oostenbrink, C. (2010). Calculations of binding affinity between C8-substituted GTP analogs and the bacterial cell-division protein FtsZ. European Biophysics Journal, 39, 1573–1580.

    Article  PubMed  CAS  Google Scholar 

  92. Hemaiswarya, S., Soudaminikkutty, R., Narasumani, M. L., & Doble, M. (2011). Phenylpropanoids inhibit protofilament formation of Escherichia coli cell division protein FtsZ. Journal of Medical Microbiology, 60, 1317–1325.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National megaproject for key infectious disease (Grant No. 2008ZX10003-006, 2012ZX10003-003), the Fundamental Research Funds for the Central Universities (Grant No. XDJK2009A003), the National natural science foundation (Grant No. 81071316), the New Century Excellent Talents Programs in Universities (NCET-11-0703), and the Excellent PhD thesis fellowship of southwest university (Grant Nos. kb2009010 and ky2011003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, W., Deng, W. & Xie, J. The Structure, Function, and Regulation of Mycobacterium FtsZ. Cell Biochem Biophys 65, 97–105 (2013). https://doi.org/10.1007/s12013-012-9415-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9415-5

Keywords

Navigation