Skip to main content
Log in

Physical Labeling of Papillomavirus-Infected, Immortal, and Cancerous Cervical Epithelial Cells Reveal Surface Changes at Immortal Stage

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

A significant change of surface features of malignant cervical epithelial cells compared to normal cells has been previously reported. Here, we are studying the question at which progressive stage leading to cervical cancer the surface alteration happens. A non-traditional method to identify malignant cervical epithelial cells in vitro, which is based on physical (in contrast to specific biochemical) labelling of cells with fluorescent silica micron-size beads, is used here to examine cells at progressive stages leading to cervical cancer which include normal epithelial cells, cells infected with human papillomavirus type-16 (HPV-16), cells immortalized by HPV-16, and carcinoma cells. The study shows a statistically significant (at p < 0.01) difference between both immortal and cancer cells and a group consisting of normal and infected. There is no significant difference between normal and infected cells. Immortal cells demonstrate the signal which is closer to cancer cells than to either normal or infected cells. This implies that the cell surface, surface cellular brush changes substantially when cells become immortal. Physical labeling of the cell surface represents a substantial departure from the traditional biochemical labeling methods. The results presented show the potential significance of physical properties of the cell surface for development of clinical methods for early detection of cervical cancer, even at the stage of immortalized, premalignant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Walboomers, J. M., Jacobs, M. V., Manos, M. M., Bosch, F. X., Kummer, J. A., Shah, K. V., et al. (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. Journal of Pathology, 189, 12–19.

    Article  PubMed  CAS  Google Scholar 

  2. Sprintz, M. (2004). Editorial: Nanotechnology for advanced therapy and diagnosis. Biomedical Microdevices, 6, 101–103.

    Article  PubMed  Google Scholar 

  3. Wright, T. C., Kurman, R. J., & Ferenczy, A. (1994). In R. J. Kurman (Ed.), Precancerous lesions of the cervix in Blaustein’s pathology of the female genital tract (pp. 229–278). New York: Springer-Verlag.

    Google Scholar 

  4. Song, S., Liem, A., Miller, J. A., & Lambert, P. F. (2000). Human papillomavirus types 16 E6 and E7 contribute differently to carcinogenesis. Virology, 267, 141–150.

    Article  PubMed  CAS  Google Scholar 

  5. Cooper, K., Herrington, C. S., Lo, E. S., Evans, M. F., & McGee, J. O. (1992). Integration of human papillomavirus types 16 and 18 in cervical adenocarcinoma. Journal of Clinical Pathology, 45, 382–384.

    Article  PubMed  CAS  Google Scholar 

  6. Daniel, B., Rangarajan, A., Mukherjee, G., Vallikad, E., & Krishna, S. (1997). The link between integration and expression of human papillomavirus type 16 genomes and cellular changes in the evolution of cervical intraepithelial neoplastic lesions. Journal of General Virology, 78(Pt 5), 1095–1101.

    PubMed  CAS  Google Scholar 

  7. von Knebel Doeberitz, M., Oltersdorf, T., Schwarz, E., & Gissmann, L. (1988). Correlation of modified human papilloma virus early gene expression with altered growth properties in C4–1 cervical carcinoma cells. Cancer Research, 48, 3780–3786.

    Google Scholar 

  8. Huibregtse, J. M., Scheffner, M., & Howley, P. M. (1991). A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO Journal, 10, 4129–4135.

    PubMed  CAS  Google Scholar 

  9. Werness, B. A., Levine, A. J., & Howley, P. M. (1990). Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science, 248, 76–79.

    Article  PubMed  CAS  Google Scholar 

  10. Dyson, N., Guida, P., Munger, K., & Harlow, E. (1992). Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. Journal of Virology, 66, 6893–6902.

    PubMed  CAS  Google Scholar 

  11. Jones, D. L., Thompson, D. A., & Munger, K. (1997). Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology, 239, 97–107.

    Article  PubMed  CAS  Google Scholar 

  12. Nuovo, J., Melnikow, J., & Howell, L. P. (2001). New tests for cervical cancer screening. American Family Physician, 64, 780–786.

    PubMed  CAS  Google Scholar 

  13. Monsonego, J., Bosch, F. X., Coursaget, P., Cox, J. T., Franco, E., Frazer, I., et al. (2004). Cervical cancer control, priorities and new directions. International Journal of Cancer, 108, 329–333.

    Article  CAS  Google Scholar 

  14. Belinson, J. L., Pretorius, R. G., Zhang, W. H., Wu, L. Y., Qiao, Y. L., & Elson, P. (2001). Cervical cancer screening by simple visual inspection after acetic acid. Obstetrics and Gynecology, 98, 441–444.

    Article  PubMed  CAS  Google Scholar 

  15. Bhatla, N., Mukhopadhyay, A., Joshi, S., Kumar, A., Kriplani, A., Pandey, R. M., et al. (2004). Visual inspection for cervical cancer screening: Evaluation by doctor versus paramedical worker. Indian Journal of Cancer, 41, 32–36.

    PubMed  CAS  Google Scholar 

  16. Marcelli, M., Ittmann, M., Mariani, S., Sutherland, R., Nigam, R., Murthy, L., et al. (2000). Androgen receptor mutations in prostate cancer. Cancer Research, 60, 944–949.

    PubMed  CAS  Google Scholar 

  17. Scarcigilia, L., Compagnone, D., Fedrici, G., & Palleschi, G. (1998). Electrochemical probe for polyamines detection in biological fluids. Analysis, 26, 219–222.

    Article  Google Scholar 

  18. Adamek, H. E., Albert, J., Breer, H., Weitz, M., Schilling, D., & Riemann, J. F. (2000). Pancreatic cancer detection with magnetic resonance cholangiopancreatography and endoscopic retrograde cholangiopancreatography: A prospective controlled study. Lancet, 356, 190–193.

    Article  PubMed  CAS  Google Scholar 

  19. Fodor, S. P., Rava, R. P., Huang, X. C., Pease, A. C., Holmes, C. P., & Adams, C. L. (1993). Multiplexed biochemical assays with biological chips. Nature, 364, 555–556.

    Article  PubMed  CAS  Google Scholar 

  20. Weissleder, R., Tung, C. H., Mahmood, U., & Bogdanov, A., Jr. (1999). In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnology, 17, 375–378.

    Article  PubMed  CAS  Google Scholar 

  21. Ramanujam, N., Mitchell, M. F., Mahadevan-Jansen, A., Thomsen, S. L., Staerkel, G., Malpica, A., et al. (1996). Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths. Photochemistry and Photobiology, 64, 720–735.

    Article  PubMed  CAS  Google Scholar 

  22. Drezek, R. A., Collier, T., Brookner, C. K., Malpica, A., Lotan, R., Richards-Kortum, R. R., et al. (2000). Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid. American Journal of Obstetrics and Gynecology, 182, 1135–1139.

    Article  PubMed  CAS  Google Scholar 

  23. Pitris, C., Goodman, A., Boppart, S. A., Libus, J. J., Fujimoto, J. G., & Brezinski, M. E. (1999). High-resolution imaging of gynecologic neoplasms using optical coherence tomography. Obstetrics and Gynecology, 93, 135–139.

    Article  PubMed  CAS  Google Scholar 

  24. Mitchell, M. F., Cantor, S. B., Ramanujam, N., Tortolero-Luna, G., & Richards-Kortum, R. (1999). Fluorescence spectroscopy for diagnosis of squamous intraepithelial lesions of the cervix. Obstetrics and Gynecology, 93, 462–470.

    Article  PubMed  CAS  Google Scholar 

  25. Bui, J. D., Zelles, T., Lou, H. J., Gallion, V. L., Phillips, M. I., & Tan, W. (1999). Probing intracellular dynamics in living cells with near-field optics. Journal of Neuroscience Methods, 89, 9–15.

    Article  PubMed  CAS  Google Scholar 

  26. Tan, W., Parpura, V., Haydon, P. G., & Yeung, E. S. (1995). Neurotransmitter imaging in living cells based on native fluorescence detection. Analytical Chemistry, 67, 2575–2579.

    Article  PubMed  CAS  Google Scholar 

  27. Fung, J. C., Marshall, W. F., Dernburg, A., Agard, D. A., & Sedat, J. W. (1998). Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple independent initiations. Journal of Cell Biology, 141, 5–20.

    Article  PubMed  CAS  Google Scholar 

  28. Bornhop, D. J., Griffin, J. M., Goebel, T. S., Sudduth, M. R., Bell, B., & Motamedi, M. (2003). Luminescent lanthanide chelate contrast agents and detection of lesions in the hamster oral cancer model. Applied Spectroscopy, 57, 1216–1222.

    Article  PubMed  CAS  Google Scholar 

  29. Iyer, S., Gaikwad, R. M., Subba-Rao, V., Woodworth, C. D., & Sokolov, I. (2009). Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nature Nanotechnology, 4, 389–393.

    Article  PubMed  CAS  Google Scholar 

  30. Sokolov, I., Iyer, S., & Woodworth, C. D. (2006). Recovery of elasticity of aged human epithelial cells in vitro. Nanomedicine, 2, 31–36.

    Article  PubMed  CAS  Google Scholar 

  31. Iyer, S., Woodworth, C. D., Gaikwad, R. M., Kievsky, Y. Y., & Sokolov, I. (2009). Towards nonspecific detection of malignant cervical cells with fluorescent silica beads. Small, 5, 2277–2284.

    Article  PubMed  CAS  Google Scholar 

  32. Gaikwad, R. M., Dokukin, M. E., Iyer, K. S., Woodworth, C. D., Volkov, D. O., & Sokolov, I. (2011). Detection of cancerous cervical cells using physical adhesion of fluorescent silica particles and centripetal force. Analyst, 136, 1502–1506.

    Article  PubMed  CAS  Google Scholar 

  33. Woodworth, C. D., Doniger, J., & DiPaolo, J. A. (1989). Immortalization of human foreskin keratinocytes by various human papillomavirus DNAs corresponds to their association with cervical carcinoma. Journal of Virology, 63, 159–164.

    PubMed  CAS  Google Scholar 

  34. Woodworth, C. D., Cheng, S., Simpson, S., Hamacher, L., Chow, L. T., Broker, T. R., et al. (1992). Recombinant retroviruses encoding human papillomavirus type 18 E6 and E7 genes stimulate proliferation and delay differentiation of human keratinocytes early after infection. Oncogene, 7, 619–626.

    PubMed  CAS  Google Scholar 

  35. Cho, E. B., Volkov, D. O., & Sokolov, I. (2010). Ultrabright fluorescent mesoporous silica nanoparticles. Small, 6, 2314–2319.

    Article  PubMed  CAS  Google Scholar 

  36. Sokolov, I., Kievsky, Y. Y., & Kaszpurenko, J. M. (2007). Self-assembly of ultrabright fluorescent silica particles. Small, 3, 419–423.

    Article  PubMed  CAS  Google Scholar 

  37. Naik, S. P., & Igor, S. (2008). Ultra-bright fluorescent silica particles: physical entrapment of fluorescent dye rhodamine 640 in nanochannels. In R. Nagarajan (Ed.), Nanoparticles: Synthesis, stabilization, passivation and functionalization (pp. 214–224). London: ACS.

    Chapter  Google Scholar 

  38. Han, M., Gao, X., Su, J. Z., & Nie, S. (2001). Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnology, 19, 631–635.

    Article  PubMed  CAS  Google Scholar 

  39. Pan, H., & Griep, A. E. (1994). Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: Implications for tumor suppressor gene function in development. Genes and Development, 8, 1285–1299.

    Article  PubMed  CAS  Google Scholar 

  40. Pan, H., & Griep, A. E. (1995). Temporally distinct patterns of p53-dependent and p53-independent apoptosis during mouse lens development. Genes and Development, 9, 2157–2169.

    Article  PubMed  CAS  Google Scholar 

  41. Woodworth, C. D., Waggoner, S., Barnes, W., Stoler, M. H., & DiPaolo, J. A. (1990). Human cervical and foreskin epithelial cells immortalized by human papillomavirus DNAs exhibit dysplastic differentiation in vivo. Cancer Research, 50, 3709–3715.

    PubMed  CAS  Google Scholar 

  42. Woodworth, C. D., McMullin, E., Iglesias, M., & Plowman, G. D. (1995). Interleukin 1 alpha and tumor necrosis factor alpha stimulate autocrine amphiregulin expression and proliferation of human papillomavirus-immortalized and carcinoma-derived cervical epithelial cells. Proceedings of the National Academy of the Sciences of the United States of America, 92, 2840–2844.

    Article  CAS  Google Scholar 

  43. Dokukin, M. E., Guz, N. V., Gaikwad, R. M., Woodworth, C. D., & Sokolov, I. (2011). Cell surface as a fractal: Normal and cancerous cervical cells demonstrate different fractal behavior of surface adhesion maps at the nanoscale. Physical Review Letters, 107, 028101.

    Article  PubMed  CAS  Google Scholar 

  44. Katki, H. A., & Wentzensen, N. (2012). How might HPV testing be integrated into cervical screening? The lancet Oncology, 13, 8–10.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this study from the National Science Foundation NSF CBET 0755704 and ARO W911NF-05-1-0339 (I.S.) and the National Cancer Institute 1R15CA126855-01 (C.W.) are acknowledged. Human tissue was obtained from the Cooperative Human Tissue Network.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Sokolov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 318 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaminathan Iyer, K., Gaikwad, R.M., Woodworth, C.D. et al. Physical Labeling of Papillomavirus-Infected, Immortal, and Cancerous Cervical Epithelial Cells Reveal Surface Changes at Immortal Stage. Cell Biochem Biophys 63, 109–116 (2012). https://doi.org/10.1007/s12013-012-9345-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9345-2

Keywords

Navigation