Skip to main content
Log in

The Effects of Copper (II) Ions on Enterococcus hirae Cell Growth and the Proton-Translocating FoF1 ATPase Activity

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Enterococcus hirae grow well under anaerobic conditions at alkaline pH (pH 8.0) producing acids by glucose fermentation. Bacterial growth was shown to be accompanied by decrease of redox potential from positive values (~+35 mV) to negative ones (~−220 mV). An oxidizer copper (II) ions (Cu2+) affected bacterial growth in a concentration-dependent manner (within the range of 0.05 mM to 1 mM) increasing lag phase duration and decreasing specific growth rate. These effects were observed with the wild-type strain ATCC9790 and the atpD mutant strain MS116 (with absent β subunit of F1 of the FoF1 ATPase) both. Also ATPase activity and proton–potassium ions exchange were assessed with and without N,N′-dicyclohexylcarbodiimide (DCCD), inhibitor of the FoF1 ATPase. In both cases (DCCD ±), even low Cu2+ concentrations had noticeable effect on ATPase activity, but with less visible concentration-dependent manner. Changes in the number of accessible SH-groups were observed with E. hirae ATCC9790 and MS116 membrane vesicles. In both strains Cu2+ markedly decreased the number of SH-groups in the presence of K+ ions. The addition of ATP increased the amount of accessible SH-groups in ATCC9790 and decreased this number in MS116; Cu2+ blocked ATP-installed increase in SH-groups number in ATCC9790. H+–K+-exchange of bacteria was markedly inhibited by Cu2+, but stronger effects were detected together with DCCD. Moreover, discrimination between Cu2+ and other bivalent cation—Ni2+ was shown. It is suggested that Cu2+ ions inhibit E. hirae cell growth by direct affect on the FoF1 ATPase leading to conformational changes in this protein complex and decrease in its activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abrams, A., & Baron, C. (1970). Inhibitory action of carbodiimide on bacterial membrane ATPase. Biochemical and Biophysical Research Communications, 41, 858–861.

    Article  CAS  PubMed  Google Scholar 

  2. Akopyan, K., & Trchounian, A. (2005). Membrane proton conductivity and energy-dependent proton fluxes in Enterococus hirae in media with different pH. Biophysics (Moscow), 50, 595–598.

    Google Scholar 

  3. Arikado, E., Ishihara, H., Ehara, T., Shibata, C., Saito, H., Kakegawa, T., et al. (1999). Enzyme level of enterococcal FoF1-ATPase is regulated by pH at the step of assembly. European Journal of Biochemistry, 259, 262–268.

    Article  CAS  PubMed  Google Scholar 

  4. Bagramyan, K., Galstyan, A., & Trchounian, A. (2000). Redox potential is a determinant in the Escherichia coli anaerobic growth and survival: Effects of impermeable oxidant. Bioelectrochemistry, 51, 151–156.

    Article  CAS  PubMed  Google Scholar 

  5. Bagramyan, K. A., & Martirosov, S. M. (1989). Formation of an ion transport supercomplex in Escherichia coli. An experimental model of direct transduction of energy. FEBS Letters, 246, 149–152.

    Article  CAS  PubMed  Google Scholar 

  6. Bagramyan, K., Mnatsakanyan, N., Poladyan, A., Vassilian, A., & Trchounian, A. (2002). The role of hydrogenases 3 and 4, and the FoF1-ATP synthase in H2 production by Escherichia coli at alkaline pH. FEBS Letters, 516, 172–178.

    Article  CAS  PubMed  Google Scholar 

  7. Bagramyan, K. A., & Trchounian, A. A. (1997). Decrease of redox potential in the anaerobic growing Escherichia coli suspension and proton-potassium exchange. Bioelectrochemistry and Bioenergetics, 43, 129–134.

    Article  CAS  Google Scholar 

  8. Bald, D., Noji, H., Yoshida, M., Hirono-Hara, Y., & Hisabori, T. (2001). Redox regulation of the rotation of F1-ATP synthase. Journal of Biological Chemistry, 276, 39505–39507.

    Article  CAS  PubMed  Google Scholar 

  9. Bossrez, S., Remacle, J., & Coyette, J. (1999). Adsorption of nickel on Enterococcus hirae cell walls. Journal of Chemical Technology and Biotechnology, 70, 45–50.

    Article  Google Scholar 

  10. Breznak, J. A., & Costilow, R. H. (1994). Physicochemical factors in growth. In P. Gerhardt, R. G. Nurrey, W. A. Wood, & N. R. Krieg (Eds.), Methods for general and molecular bacteriology (pp. 137–155). Washington, DC: ASM Press.

    Google Scholar 

  11. Cooksey, D. A. (1993). Copper uptake and resistance in bacteria. Molecular Microbiology, 7, 1–5.

    Article  CAS  PubMed  Google Scholar 

  12. Ermler, U., Grabarse, W., Shima, S., Goubeaud, M., & Thauer, R. K. (1998). Active sites of transition-metal enzymes with a focus on nickel. Current Opinion on Structural Biology, 8, 749–758.

    Article  CAS  Google Scholar 

  13. Kawano, M., Igarashi, K., & Kakinuma, Y. (2002). Isolation of Enterococcus hirae mutant deficient in low-affinity potassium uptake at alkaline pH. Bioscience, Biotechnology, Biochemistry, 66, 1597–1600.

    Article  CAS  Google Scholar 

  14. Kirakosyan, G., Bagramyan, K., & Trchounian, A. (2004). Redox sensing by Escherichia coli: effects of dithiothreitol, a redox reagent reducing disulphides, on bacterial growth. Biochemical and Biophysical Research Communication, 325, 803–806.

    Article  CAS  Google Scholar 

  15. Kirakosyan, G., & Trchounian, A. (2007). Redox sensing by Escherichia coli: Effects of copper ions as oxidizers on proton-coupled membrane transport. Bioelectrochemistry, 70, 58–63.

    Article  CAS  PubMed  Google Scholar 

  16. Kirakosyan, G., Trchounian, K., Vardanyan, Z., & Trchounian, A. (2008). Copper (II) ions affect Escherichia coli membrane vesicles’ SH-groups and a disulfide-dithiol interchange between membrane proteins. Cell Biochemistry and Biophysics, 51, 45–50.

    Article  CAS  PubMed  Google Scholar 

  17. Kobayashi, H., Suzuki, T., Kinoshita, N., & Unemoto, T. (1984). Amplification of the Streptococcus faecalis proton-translocating ATPase by a decrease in cytoplasmatic pH. Journal of Bacteriology, 158, 1157–1160.

    CAS  PubMed  Google Scholar 

  18. Lebedev, V. S., Volodina, L. A., EYu, Deinega., & YuI, Fedorov. (2005). Structural modifications of the surface of Escherichia coli bacteria and copper induced permeability of plasma membrane. Biofizika, 50, 107–113. (in Russian).

    CAS  PubMed  Google Scholar 

  19. Letelier, M. E., Lepe, A. M., Faundez, M., Salazar, J., Martin, R., Aracena, P., et al. (2005). Possible mechanisms underlaying copper-induced damage in biological membranes leading to cellular toxicity. Chemico-Biological Interactions, 151, 71–82.

    Article  CAS  PubMed  Google Scholar 

  20. Lowry, N. O., Rosenbrough, N. J., Farr, A. C., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 263–275.

    Google Scholar 

  21. Maroney, M. J. (1999). Structure/function relationships in nickel metallo-biochemistry. Current Opinion in Chemistry and Biology, 3, 188–199.

    Article  CAS  Google Scholar 

  22. Mnatsakanyan, N., Bagramyan, K., Vassilian, A., Nakamoto, R., & Trchounian, A. (2002). FO cysteine, bCys21, in the Escherichia coli ATP synthase is involved in regulation of potassium uptake and molecular hydrogen production in anaerobic conditions. Bioscience Reports, 22, 421–430.

    Article  CAS  PubMed  Google Scholar 

  23. Mnatsakanyan, N., Poladian, A., Bagramyan, K., & Trchounian, A. (2003). The number of accessible SH-groups in Escherichia coli membrane vesicles is increased by ATP and by formate. Biochemical and Biophysical Research Communications, 308, 655–659.

    Article  CAS  PubMed  Google Scholar 

  24. Mugikura, S., Nishikawa, M., Igarashi, K., & Kobayashi, H. (1990). Maintenance of a neutral cytoplasmic pH is not obligatory for growth of Escherichia coli and Streptococcus faecalis at an alkaline pH. Journal of Biochemistry, 108, 86–91.

    CAS  PubMed  Google Scholar 

  25. Murata, T., Yamato, I., & Kakinuma, Y. (2005). Structure and mechanism of vacuolar Na+-transporting ATPase from Enterococcus hirae. Journal of Bioenergetics and Biomembranes, 37, 411–413.

    Article  CAS  PubMed  Google Scholar 

  26. Poladyan, A., & Trchounian, A. (1999). Stoichiometry of the proton-potassium exchange in Enterococcus hirae grown at high pH values. Biophysics, 44, 472–474.

    Google Scholar 

  27. Poladyan, A., & Trchounian, A. (2006). The increase in the number of accessible SH-groups in the Enterococcal membrane vesicles by ATP and nicotinamide adenine dinucleotides. Current Microbiology, 52, 300–304.

    Article  CAS  PubMed  Google Scholar 

  28. Poladyan, A., Trchounian, К., Tadevosyan, L., & Trchounian, A. (2008). Effects of Ellman’s and the other thiol reagents on ion transport and ATPase activity in anaerobically grown Escherichia coli. Biochemistry (Moscow): A Membrane and Cell Biology, 2, 1–7.

    Google Scholar 

  29. Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 27, 197–213.

    Article  CAS  PubMed  Google Scholar 

  30. Riddles, P., Blakeley, R., & Zerner, B. (1983). Reassessment of Ellman’s reagent. Methods of Enzymology, 91, 49–60.

    Article  CAS  Google Scholar 

  31. Riondet, C., Cachon, R., Wache, Y., Alcarez, G., & Divies, C. (1999). Changes in the proton-motive force in Escherichia coli in response to external oxidoreduction potential. European Journal of Biochemistry, 262, 595–599.

    Article  CAS  PubMed  Google Scholar 

  32. Rosen, B. P. (2002). Transport and detoxication systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comparative Biochemistry and Physiology. A Molecular and Integrative Physiology, 133, 689–693.

    Article  Google Scholar 

  33. Shibata, C., Ehara, T., Tomura, K., Igarashi, K., & Kobayashi, H. (1992). Gene structure of Enterococcus hirae (Streptococcus faecalis) FoF1-ATPase, which functions as a regulator of cytoplasmic pH. Journal of Bacteriology, 174, 6117–6124.

    CAS  PubMed  Google Scholar 

  34. Takase, K., Yamato, I., & Kakinuma, Y. (1993). Cloning and sequencing of the genes coding for the A and B subunits of vacuolar-type Na+-ATPase from Enterococcus hirae. Coexistence of vacuolar- and FoF1 ATPases in one bacterial cell. Journal of Biological Chemistry, 268, 11610–11616.

    CAS  PubMed  Google Scholar 

  35. Taussky, H., & Shorr, E. (1953). A microcolorimetric method for the determination of inorganic phosphorus. Journal of Biological Chemistry, 202, 675–685.

    CAS  PubMed  Google Scholar 

  36. Trchounian, A. (2004). Escherichia coli proton-translocating FoF1 ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation-reduction under fermentation. Biochemical and Biophysical Research Communications, 315, 1051–1057.

    Article  CAS  PubMed  Google Scholar 

  37. Trchounian, A., & Kobayashi, H. (1998). Relationship of K+-uptaking system with H+-translocating ATPase in Enterococcus hirae, growth at a high or low alkaline pH. Current Microbiology, 36, 114–118.

    Article  CAS  PubMed  Google Scholar 

  38. Vassilian, A., & Trchounian, A. (2009). Environment oxidation-reduction potential and redox sensing by bacteria. In A. Trchounian (Ed.), Bacterial membranes (pp. 163–195). Kerala (India): Research Signpost.

    Google Scholar 

  39. Volodina, L. A., Zhigach, A. N., Leypunsky, I. O., YuI, Fedorov., & Glushenko, N. N. (2009). On the mechanism of toxic effect of copper nanoparticles on bacteria Escherichia coli. Biofizika, 54, 1060–1065. (in Russian).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. H. Kobayashi for supplying E. hirae strains and valuable advices as well as Drs. Anna Poladyan and Gayane Kirakosyan for help in some experiments and useful comments. The study was supported by the Grant (#1012-2008) from the Ministry of Education and Science of the Republic of Armenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen Trchounian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vardanyan, Z., Trchounian, A. The Effects of Copper (II) Ions on Enterococcus hirae Cell Growth and the Proton-Translocating FoF1 ATPase Activity. Cell Biochem Biophys 57, 19–26 (2010). https://doi.org/10.1007/s12013-010-9078-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9078-z

Keywords

Navigation