Skip to main content
Log in

Why Can dl-Sotalol Prolong the QT Interval In Vivo Despite Its Weak Inhibitory Effect on hERG K+ Channels In Vitro? Electrophysiological and Pharmacokinetic Analysis with the Halothane-Anesthetized Guinea Pig Model

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

In order to bridge the gap of action of dl-sotalol between the human ether-a-go-go-related gene (hERG) K+ channel inhibition in vitro and QT-interval prolongation in vivo, its electropharmacological effect and pharmacokinetic property were simultaneously studied in comparison with those of 10 drugs having potential to prolong the QT interval (positive drugs: bepridil, haloperidol, dl-sotalol, terfenadine, thioridazine, moxifloxacin, pimozide, sparfloxacin, diphenhydramine, imipramine and ketoconazole) and four drugs lacking such property (negative drugs: enalapril, phenytoin, propranolol or verapamil) with the halothane-anesthetized guinea pig model. A dose of each drug that caused 10 % prolongation of Fridericia-corrected QT interval (QTcF) was calculated, which was compared with respective known hERG K+ IC50 value and currently obtained heart/plasma concentration ratio. Each positive drug prolonged the QTcF in a dose-related manner, whereas such effect was not observed by the negative drugs. Drugs with more potent hERG K+ channel inhibition showed higher heart/plasma concentration ratio, resulting in more potent QTcF prolongation in vivo. The potency of dl-sotalol for QTcF prolongation was flat middle, although its hERG K+ channel inhibitory property as well as heart/plasma concentration ratio was the smallest among the positive drugs, which may be partly explained by its lack of binding to plasma protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. The ICH Steering Committee. The nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals (S7B), The International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), The Guideline was recommended for adoption at Step 5 of the ICH process in May 2005. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S7B/Step4/S7B_Guideline.pdf. Accessed December 21, 2014.

  2. Darpo, B. (2010). The thorough QT study four years after the implementation of the ICH E14 guidance. British Journal of Pharmacology, 159, 49–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sugiyama, A., Hashimoto, H., Nakamura, Y., Fujita, T., & Kumagai, Y. (2014). QT/QTc study conducted in Japanese adult healthy subjects: A novel xanthine oxidase inhibitor topiroxostat was not associated with QT prolongation. Journal of Clinical Pharmacology, 54, 446–452.

    Article  PubMed  Google Scholar 

  4. Sakaguchi, Y., Sugiyama, A., Takao, S., Akie, Y., Takahara, A., & Hashimoto, K. (2005). Halothane sensitizes the guinea-pig heart to pharmacological IKr blockade: Comparison with urethane anesthesia. Journal of Pharmacological Sciences, 99, 185–190.

    Article  CAS  PubMed  Google Scholar 

  5. Sakaguchi, Y., Takahara, A., Nakamura, Y., Akie, Y., & Sugiyama, A. (2009). Halothane-anaesthetized, closed-chest, guinea-pig model for assessment of drug-induced QT-interval prolongation. Basic & Clinical Pharmacology & Toxicology, 104, 43–48.

    Article  CAS  Google Scholar 

  6. Behr, E. R., & Roden, D. (2013). Drug-induced arrhythmia: Pharmacogenomic prescribing? European Heart Journal, 34, 89–95.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Minematsu, T., Ohtani, H., Yamada, Y., Sawada, Y., Sato, H., & Iga, T. (2001). Quantitative relationship between myocardial concentration of tacrolimus and QT prolongation in guinea pigs: Pharmacokinetic/pharmacodynamic model incorporating a site of adverse effect. Journal of Pharmacokinetics and Pharmacodynamics, 28, 533–554.

    Article  CAS  PubMed  Google Scholar 

  8. Deneer, V. H., Lie-A-Huen, L., Kingma, J. H., Proost, J. H., Kelder, J. C., & Brouwers, J. R. (1998). Absorption kinetics of oral sotalol combined with cisapride and sublingual sotalol in healthy subjects. British Journal of Clinical Pharmacology, 45, 485–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sugiyama, A. (2008). Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodelled hearts. British Journal of Pharmacology, 154, 1528–1537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Montay, G., Bruno, R., Vergniol, J. C., Ebmeier, M., Le Roux, Y., Guimart, C., et al. (1994). Pharmacokinetics of sparfloxacin in humans after single oral administration at doses of 200, 400, 600, and 800 mg. Journal of Clinical Pharmacology, 34, 1071–1076.

    Article  CAS  PubMed  Google Scholar 

  11. Baxter, J. G., Brass, C., Schentag, J. J., & Slaughte, R. L. (1986). Pharmacokinetics of ketoconazole administered intravenously to dogs and orally as tablet and solution to humans and dogs. Journal of Pharmaceutical Sciences, 75, 443–447.

    Article  CAS  PubMed  Google Scholar 

  12. CredibleMeds®. www.crediblemeds.org. Accessed December 21, 2014.

  13. Polak, S., Wiśniowska, B., & Brandys, J. (2009). Collation, assessment and analysis of literature in vitro data on hERG receptor blocking potency for subsequent modeling of drugs’ cardiotoxic properties. Journal of Applied Toxicology, 29, 183–206.

    Article  CAS  PubMed  Google Scholar 

  14. Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A. C., Liu, Y., et al. (2014). DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Research, 42(Database issue), D1091–D1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. DrugBank Version 4.1. www.drugbank.ca. Accessed December 21, 2014.

  16. Ishizaka, T., Takahara, A., Iwasaki, H., Mitsumori, Y., Kise, H., Nakamura, Y., & Sugiyama, A. (2008). Comparison of electropharmacological effects of bepridil and sotalol in halothane-anesthetized dogs. Circulation Journal, 72, 1003–1011.

    Article  CAS  PubMed  Google Scholar 

  17. Sugiyama, A., Satoh, Y., & Hashimoto, K. (2001). In vivo canine model comparison of cardiohemodynamic and electrophysiological effects of a new antipsychotic drug aripiprazole (OPC-14597) to haloperidol. Toxicology and Applied Pharmacology, 173, 120–128.

    Article  CAS  PubMed  Google Scholar 

  18. Chiba, K., Sugiyama, A., Hagiwara, T., Takahashi, S., Takasuna, K., & Hashimoto, K. (2004). In vivo experimental approach for the risk assessment of fluoroquinolone antibacterial agents-induced long QT syndrome. European Journal of Pharmacology, 486, 189–200.

    Article  CAS  PubMed  Google Scholar 

  19. Chiba, K., Sugiyama, A., Satoh, Y., Shiina, H., & Hashimoto, K. (2000). Proarrhythmic effects of fluoroquinolone antibacterial agents: In vivo effects as physiologic substrate for torsades. Toxicology and Applied Pharmacology, 169, 8–16.

    Article  CAS  PubMed  Google Scholar 

  20. Mitsumori, Y., Nakamura, Y., Hoshiai, K., Nagayama, Y., Adachi-Akahane, S., Koizumi, S., et al. (2010). In vivo canine model comparison of cardiovascular effects of antidepressants milnacipran and imipramine. Cardiovascular Toxicology, 10, 275–282.

    Article  CAS  PubMed  Google Scholar 

  21. Shiina, H., Sugiyama, A., Takahara, A., Satoh, Y., & Hashimoto, K. (2000). Comparison of the electropharmacological effects of verapamil and propranolol in the halothane-anesthetized in vivo canine model under monophasic action potential monitoring. Japanese Circulation Journal, 64, 777–782.

    Article  CAS  PubMed  Google Scholar 

  22. Takahara, A., Sugiyama, A., Satoh, Y., Wang, K., Honsho, S., & Hashimoto, K. (2005). Halothane sensitizes the canine heart to pharmacological IKr blockade. European Journal of Pharmacology, 507, 169–177.

    Article  CAS  PubMed  Google Scholar 

  23. Tashibu, H., Miyazaki, H., Aoki, K., Akie, Y., & Yamamoto, K. (2005). QT PRODACT: In vivo QT assay in anesthetized dog for detecting the potential for QT interval prolongation by human pharmaceuticals. Journal of Pharmacological Sciences, 99, 473–486.

    Article  CAS  PubMed  Google Scholar 

  24. Toyoshima, S., Kanno, A., Kitayama, T., Sekiya, K., Nakai, K., Haruna, M., et al. (2005). QT PRODACT: In vivo QT assay in the conscious dog for assessing the potential for QT interval prolongation by human pharmaceuticals. Journal of Pharmacological Sciences, 99, 459–471.

    Article  CAS  PubMed  Google Scholar 

  25. Ando, K., Hombo, T., Kanno, A., Ikeda, H., Imaizumi, M., Shimizu, N., et al. (2005). QT PRODACT: In vivo QT assay with a conscious monkey for assessment of the potential for drug-induced QT interval prolongation. Journal of Pharmacological Sciences, 99, 487–500.

    Article  CAS  PubMed  Google Scholar 

  26. Young, R. J., Green, D. V., Luscombe, C. N., & Hill, A. P. (2011). Getting physical in drug discovery II: The impact of chromatographic hydrophobicity measurements and aromaticity. Drug Discovery Today, 16, 822–830.

    Article  CAS  PubMed  Google Scholar 

  27. Waring, M. J., & Johnstone, C. (2007). A quantitative assessment of hERG liability as a function of lipophilicity. Bioorganic & Medicinal Chemistry Letters, 17, 1759–1764.

    Article  CAS  Google Scholar 

  28. Titier, K., Canal, M., Déridet, E., Abouelfath, A., Gromb, S., Molimard, M., & Moore, N. (2004). Determination of myocardium to plasma concentration ratios of five antipsychotic drugs: Comparison with their ability to induce arrhythmia and sudden death in clinical practice. Toxicology and Applied Pharmacology, 199, 52–60.

    Article  CAS  PubMed  Google Scholar 

  29. Redfern, W. S., Carlsson, L., Davis, A. S., Lynch, W. G., MacKenzie, I., Palethorpe, S., et al. (2003). Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: Evidence for a provisional safety margin in drug development. Cardiovascular Research, 58, 32–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grant-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology in Japan (#25460344, #S1101016), Japan Science and Technology Agency (#AS2116907E), and Toho University Joint Research Fund (H25-3, H26-2). The authors thank Dr. Akira Akimoto and Ms. Misako Nakatani for their technical supports.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuji Nakamura or Atsushi Sugiyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katagi, J., Nakamura, Y., Cao, X. et al. Why Can dl-Sotalol Prolong the QT Interval In Vivo Despite Its Weak Inhibitory Effect on hERG K+ Channels In Vitro? Electrophysiological and Pharmacokinetic Analysis with the Halothane-Anesthetized Guinea Pig Model. Cardiovasc Toxicol 16, 138–146 (2016). https://doi.org/10.1007/s12012-015-9322-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-015-9322-2

Keywords

Navigation