Skip to main content
Log in

Nitrogen Compounds Prevent H9c2 Myoblast Oxidative Stress-Induced Mitochondrial Dysfunction and Cell Death

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

An Erratum to this article was published on 02 March 2010

Abstract

Oxidative stress has been connected to various forms of cardiovascular diseases. Previously, we have been investigating the potential of new nitrogen-containing synthetic compounds using a neuronal cell model and different oxidative stress conditions in order to elucidate their potential to ameliorate neurodegenerative diseases. Here, we intended to extend these initial studies and investigate the protective role of four of those new synthetic compounds (FMA4, FMA7, FMA762 and FMA796) against oxidative damage induced to H9c2 cardiomyoblasts by tert-butylhydroperoxide (t-BHP). The data indicates that FMA762 and FMA796 decrease t-BHP-induced cell death, as measured by both sulforhodamine B assay and nuclear chromatin condensation evaluation, at non-toxic concentrations. In addition, the two mentioned compounds inhibit intracellular signalling mechanisms leading to apoptotic cell death, namely those mediated by mitochondria, which was confirmed by their ability to overcome t-BHP-induced morphological changes in the mitochondrial network, loss of mitochondrial membrane potential, increased expression of the pro-apoptotic proteins p53, Bax and AIF and activation of caspases-3 and -9. Importantly, our results indicate that the compounds’ ROS scavenging ability plays a crucial role in the protection profile, as a significant decrease in t-BHP-induced oxidative stress occurred in their presence. Data obtained indicates that some of the test compounds may clearly prove valuable in a clinical context by diminishing cardiac injury associated to oxidative stress without any toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

t-BHP:

tert-butyl hydroperoxide

SRB:

Sulforhodamine B

TMRM:

Tetramethyl rhodamine methyl ester

Δψ :

Membrane potential

CCCP:

Carbonyl cyanide m-chloro phenyl hydrazone

AIF:

Apoptosis-inducing factor

CM-H2DCFDA:

5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate

NBT:

NitroBlue Tetrazolium

fSD:

Intracellular fluorescence standard deviation

References

  1. Sgobbo, P., Pacelli, C., Grattagliano, I., Villani, G., & Cocco, T. (2007). Carvedilol inhibits mitochondrial complex I and induces resistance to H2O2-mediated oxidative insult in H9c2 myocardial cells. Biochimica et Biophysica Acta, 1767, 222–232.

    Article  CAS  PubMed  Google Scholar 

  2. Giordano, F. J. (2005). Oxygen, oxidative stress, hypoxia, and heart failure. Journal of Clinical Investigation, 115, 500–508.

    CAS  PubMed  Google Scholar 

  3. Sam, F., Kerstetter, D. L., Pimental, D. R., Mulukutla, S., Tabaee, A., Bristow, M. R., et al. (2005). Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. Journal of Cardiac Failure, 11, 473–480.

    Article  CAS  PubMed  Google Scholar 

  4. Kaiserova, H., Simunek, T., van der Vijgh, W. J. F., Bast, A., & Kvasnickova, E. (2007). Flavonoids as protectors against doxorubicin cardiotoxicity: Role of iron chelation, antioxidant activity and inhibition of carbonyl reductase. Biochimica et Biophysica Acta, 1772, 1065–1074.

    CAS  PubMed  Google Scholar 

  5. Nakamura, K., Kusano, K., Nakamura, Y., Kakishita, M., Ohta, K., Nagase, S., et al. (2002). Carvedilol decreases elevated oxidative stress in human failing myocardium. Circulation, 105, 2867–2871.

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, K., Zhao, G. M., Wu, D., Soong, Y., Birk, A. V., Schiller, P. W., et al. (2004). Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. Journal of Biological Chemistry, 279, 34682–34690.

    Article  CAS  PubMed  Google Scholar 

  7. Wallace, K. B. (2007). Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovascular Toxicology, 7, 101–107.

    Article  CAS  PubMed  Google Scholar 

  8. Isomoto, S., Kawakami, A., Arakaki, T., Yamashita, S., Yano, K., & Ono, K. (2006). Effects of antiarrhythmic drugs on apoptotic pathways in H9c2 cardiac cells. Journal of Pharmacological Sciences, 101, 318–324.

    Article  CAS  PubMed  Google Scholar 

  9. Petrosillo, G., Ruggiero, F. M., & Paradies, G. (2003). Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB Journal, 17, 2202–2208.

    Article  CAS  PubMed  Google Scholar 

  10. Reeve, J. L. V., Szegezdi, E., Logue, S. E., Chonghaile, T. N., O’Brien, T., Ritter, T., et al. (2007). Distinct mechanisms of cardiomyocyte apoptosis induced by doxorubicin and hypoxia converge on mitochondria and are inhibited by Bcl-XL. Journal of Cellular and Molecular Medicine, 11, 509–520.

    Article  CAS  PubMed  Google Scholar 

  11. Silva, J. P., Areias, F. M., Proença, M. F., & Coutinho, O. P. (2006). Oxidative stress protection by newly synthesized nitrogen compounds with pharmacological potential. Life Science, 78, 1256–1267.

    Article  CAS  Google Scholar 

  12. Silva, J. P., Proença, M. F., & Coutinho, O. P. (2008). Protective role of new nitrogen compounds on ROS/RNS-mediated damage to PC12 cells. Free Radical Research, 42, 57–69.

    Article  CAS  PubMed  Google Scholar 

  13. Marczin, N., El-Habashi, N., Hoare, G. S., Bundy, R. E., & Yacoub, M. (2003). Antioxidants in myocardial ischemia-reperfusion injury: Therapeutic potential and basic mechanisms. Archives of Biochemistry and Biophysics, 420, 222–236.

    Article  CAS  PubMed  Google Scholar 

  14. Haramaki, N., Stewart, D. B., Aggarwai, S., Ikeda, H., Reznick, A. Z., & Packer, L. (1998). Networking antioxidants in the isolated rat heart are selectively depleted by ischemia-reperfusion. Free Radical Biology and Medicine, 25, 329–339.

    Article  CAS  PubMed  Google Scholar 

  15. Areias, F. M. (2006). Novos compostos heterocíclicos de azoto com unidades fenólicas: síntese e actividade biológica, Ph.D. Thesis. University of Minho, Braga, Portugal. Available online at: http://hdl.handle.net/1822/5941.

  16. Kimes, B. W., & Brandt, B. L. (1976). Properties of a clonal muscle cell line from rat heart. Experimental Cell Research, 98, 367–381.

    Article  CAS  PubMed  Google Scholar 

  17. L’Ecuyer, T., Horenstein, M. S., Thomas, R., & Heide, R. V. (2001). DNA damage is an early event in doxorubicin-induced cardiac myocyte death. American Journal of Physiology, 74, 370–379.

    Google Scholar 

  18. Dangel, V., Giray, J., Ratge, D., & Wisser, H. (1996). Regulation of beta-adrenoceptor density and mRNA levels in the rat heart cell-line H9c2. Biochemical Journal, 317, 925–931.

    CAS  PubMed  Google Scholar 

  19. Papazisis, K. T., Geromichalos, G. D., Dimitriadis, K. A., & Kortsaris, A. H. (1997). Optimization of the sulforhodamine B colorimetric assay. Journal of Immunological Methods, 208, 151–158.

    Article  CAS  PubMed  Google Scholar 

  20. Sardão, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2007). Vital imaging of H9c2 myoblasts exposed to tert-butylhydroperoxide—characterization of morphological features of cell death. BMC Cell Biology, 8, 11–27.

    Article  PubMed  Google Scholar 

  21. Ehrenberg, B., Montana, V., Wei, M. D., Wuskell, J. P., & Loew, L. M. (1988). Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophysical Journal, 53, 785–794.

    Article  CAS  PubMed  Google Scholar 

  22. Brennan, J. P., Berry, R. G., Baghai, M., Duchen, M. R., & Shattock, M. J. (2006). FCCP is cardioprotective at concentrations that cause mitochondrial oxidation without detectable depolarisation. Cardiovascular Research, 72, 322–330.

    Article  CAS  PubMed  Google Scholar 

  23. Serafim, T. L., Matos, J. A. C., Sardão, V. A., Pereira, G. C., Branco, A. F., Pereira, S. L., et al. (2008). Sanguinarine cytotoxicity on mouse melanoma K1735-M2 cells—Nuclear vs. mitochondrial effects. Biochemical Pharmacology, 76, 1459–1475.

    Article  CAS  PubMed  Google Scholar 

  24. Valentão, P., Fernandes, E., Carvalho, F., Andrade, P. B., Seabra, R. M., & Bastos, M. L. (2001). Antioxidant activity of Centaurium erythraea infusion evidenced by its superoxide radical scavenging and xanthine oxidase inhibitory activity. Journal of Agricultural and Food Chemistry, 49, 3476–3479.

    Article  PubMed  Google Scholar 

  25. Alia, M., Ramos, S., Mateos, R., Bravo, L., & Goya, L. (2005). Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2). Journal of Biochemical and Molecular Toxicology, 19, 119–128.

    Article  CAS  PubMed  Google Scholar 

  26. Pias, E. K., & Aw, T. Y. (2002). Early redox imbalance mediates hydroperoxide-induced apoptosis in mitotic competent undifferentiated PC12 cells. Cell Death and Differentiation, 9, 1007–1016.

    Article  CAS  PubMed  Google Scholar 

  27. Lim, M. L. R., Minamikawa, T., & Nagley, P. (2001). The protonophore CCCP induces mitochondrial permeability transition without cytochrome c release in human osteosarcoma cells. FEBS Letters, 503, 69–74.

    Article  CAS  PubMed  Google Scholar 

  28. Beere, H. M. (2005). Death versus survival: Functional interaction between the apoptotic and stress-inducible heat shock protein pathways. Journal of Clinical Investigation, 115, 2633–2639.

    Article  CAS  PubMed  Google Scholar 

  29. Sardão, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemotherapy and Pharmacology, 64, 811–827.

    Article  PubMed  Google Scholar 

  30. Lorenzo, H. K., & Susin, S. A. (2007). Therapeutic potential of AIF-mediated caspase-independent programmed cell death. Drug Resistance Updates, 10, 235–255.

    Article  CAS  PubMed  Google Scholar 

  31. Ahmed-Choudhury, J., Orsler, D. J., & Coleman, R. (1998). Hepatobiliary effects of tertiary-butylhydroperoxide (tBOOH) in isolated rat hepatocyte couplets. Toxicology and Applied Pharmacology, 152, 270–275.

    Article  CAS  PubMed  Google Scholar 

  32. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology, 39, 44–84.

    Article  CAS  PubMed  Google Scholar 

  33. Silva, J. P., Gomes, A. C., Proença, F., & Coutinho, O. P. (2009). Novel nitrogen compounds enhance protection and repair of oxidative DNA damage in a neuronal cell model: Comparison with quercetin. Chemico-Biological Interactions, 181, 328–337.

    Article  CAS  PubMed  Google Scholar 

  34. Orrenius, S., Gogvadze, V., & Zhivotovsky, B. (2007). Mitochondrial oxidative stress: Implications for cell death. Annual Review of Pharmacology and Toxicology, 47, 143–183.

    Article  CAS  PubMed  Google Scholar 

  35. Haidara, K., Morel, I., Abaléa, V., Barré, M. G., & Denizeau, F. (2002). Mechanism of tert-butylhydroperoxide induced apoptosis in rat hepatocytes: Involvement of mitochondria and endoplasmic reticulum. Biochimica et Biophysica Acta, 1542, 173–185.

    CAS  PubMed  Google Scholar 

  36. L’Ecuyer, T., Sanjeev, S., Thomas, R., Novak, R., Das, L., Campbell, W., et al. (2006). DNA damage is an early event in doxorubicin-induced cardiac myocyte death. American Journal of Physiology, 291, 1273–1280.

    Google Scholar 

  37. Bolli, R., Becker, L., Gross, G., Mentzer, R., Jr., Balshaw, D., & Lathrop, D. A. (2004). Myocardial protection at a crossroads: The need for translation into clinical therapy. Circulation Research, 95, 125–134.

    Article  CAS  PubMed  Google Scholar 

  38. Dirksen, M. T., Laarman, G. J., Simoons, M. L., & Duncker, D. J. G. M. (2007). Reperfusion injury in humans: A review of clinical trials on reperfusion injury inhibitory strategies. Cardiovascular Research, 74, 343–355.

    Article  CAS  PubMed  Google Scholar 

  39. Mahaffey, K. W., Puma, J. A., Barbagelata, N. A., DiCarli, M. F., Leesar, M. A., Browne, K. F., et al. (1999). Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: Results of a multicenter, randomized, placebo-controlled trial: The acute myocardial infarction study of adenosine (Amistad) trial. Journal of the American College of Cardiology, 34, 1711–1720.

    Article  CAS  PubMed  Google Scholar 

  40. Mentzer, R. M., Jr., Bartels, C., Bolli, R., Boyce, S., Buckberg, G. D., Chaitman, B., et al. (2008). Sodium-hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: Results of the expedition study. Annals of Thoracic Surgery, 85, 1261–1270.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

JPS is supported by the Portuguese Foundation for Science and Technology (FCT), Grant SFRH/BD/17174/2004. The present work was supported by FCT research Grant PTDC/QUI/64358/2006. We want to thank Prof. Fernanda Proença, from the Department of Chemistry, University of Minho, for kindly supplying the synthetic nitrogen compounds used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João P. Silva.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12012-010-9067-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, J.P., Sardão, V.A., Coutinho, O.P. et al. Nitrogen Compounds Prevent H9c2 Myoblast Oxidative Stress-Induced Mitochondrial Dysfunction and Cell Death. Cardiovasc Toxicol 10, 51–65 (2010). https://doi.org/10.1007/s12012-010-9062-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-010-9062-2

Keywords

Navigation