Skip to main content

Advertisement

Log in

Concentration and Trophic Transfer of Copper, Selenium, and Zinc in Marine Species of the Chilean Patagonia and the Antarctic Peninsula Area

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Patagonia and Antarctica are biodiverse regions in the Southern Hemisphere, but little is known about the levels of trace elements in marine organisms from these remote coastal ecosystems. In this study, selenium (Se), copper (Cu), zinc (Zn), and stable isotopes of nitrogen (δ15N; relative trophic level) were measured in 36 marine species collected from two locations of the Chilean Patagonia and two locations of the Antarctic Peninsula area to determine whether biomagnification of these trace elements occurs in the food webs. Results indicated that Cu, Se, and Zn levels were slightly lower than those in similar species from elsewhere, and the highest metal levels were found in marine macroinvertebrates compared with fishes. There was evidence of Cu, Se, and Zn biomagnification but only within the lower-trophic-level organisms. When assessing whole food webs, levels of these elements typically decreased from macroinvertebrates to fishes or birds, suggesting lower risks of metal toxicity to higher-level consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326:1–31

    CAS  PubMed  Google Scholar 

  2. Szopińska M, Namieśnik J, Polkowska Z (2016) How important is research on pollution levels in Antarctica? Historical approach, difficulties and current trends. Rev Environ Contam Toxicol 239:79–156

    Google Scholar 

  3. Srinivasan M, Swain G (2007) Managing the use of copper-based antifouling paints. Environ Manag 39:423–441

    Google Scholar 

  4. Bustamante P, Bocherab P, Chérel Y, Miramand P, Caurant F (2003) Distribution of trace elements in the tissues of benthic and pelagic fish from the Kerguelen Islands. Sci Total Environ 313:25–39

    CAS  PubMed  Google Scholar 

  5. Tin T, Fleming Z, Hughes K, Ainley DG, Convey P, Moreno CA, Pfeiffer S, Scott J, Snape I (2009) Impacts of local human activities on the Antarctic environment. Antarct Sci 21:3–33

    Google Scholar 

  6. Nordberg M, Nordberg GF (2016) Trace element research-historical and future aspects. J Trace Elem Med Biol 38:46–52

    CAS  PubMed  Google Scholar 

  7. Paris-Palacios S, Biagianti-Risbourg S (2006) Hepatocyte nuclear structure and subcellular distribution of copper in zebrafish Brachydanio rerio and roach Rutilus rutilus (Teleostei, Cyprinidae) exposed to copper sulphate. Aquat Toxicol 77:306–313

    CAS  PubMed  Google Scholar 

  8. Paris-Palacios S, Biagianti-Risbourg S, Vernet G (2000) Biochemical and (ultra)structural hepatic perturbations of Brachydanio rerio (Teleostei, Cyprinidae) exposed to two sublethal concentrations of copper sulfate. Aquat Toxicol 50:109–124

    CAS  PubMed  Google Scholar 

  9. Deheyn DD, Gendreau P, Baldwin RJ, Latz MI (2005) Evidence for enhanced bioavailability of trace elements in the marine ecosystem of Deception Island, a volcano in Antarctica. Mar Environ Res 60:1–33

    CAS  PubMed  Google Scholar 

  10. Iavicoli I, Fontana L, Bergamaschi A (2009) The effects of metals as endocrine disruptors. J Toxicol Environ Health B 12:206–223

    CAS  Google Scholar 

  11. Eisler R (1993) Zinc hazards to fish, wildlife and invertebrates. A synoptic review. U.S. Fish and Wildlife Service, Washington, DC. https://www.pwrc.usgs.gov/eisler/CHR_26_Zinc.pdf. Accessed 20 June 2018

  12. Prashanth L, Kattapagari KK, Chitturi RT, Baddam VR, Prasad LK (2016) A review on role of essential trace elements in health and disease. J Ntr Univ Health Sci 4:75–85

    Google Scholar 

  13. Suedel BC, Boraczek JA, Peddicord RK, Clifford PA, Dillon TM (1994) Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Rev Environ Contam Toxicol 136:21–89

    CAS  PubMed  Google Scholar 

  14. Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol 47:13385–13394

    CAS  PubMed  Google Scholar 

  15. Barwick M, Maher W (2003) Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Mar Environ Res 56:471–502

    CAS  PubMed  Google Scholar 

  16. Cardwell RD, DeForest DK, Brix KV, Adams WJ (2013) Do Cd, Cu, Ni, Pb, and Zn biomagnify in aquatic ecosystems? Rev Environ Contam Toxicol 226:101–122

    CAS  PubMed  Google Scholar 

  17. Espejo W, Kitamura D, Kidd K, Celis J, Kashiwada S, Galbán-Malagón C, Barra R, Chiang G (2018) Biomagnification of tantalum through diverse aquatic food webs. Environ Sci Technol Lett 5:196–201

    CAS  Google Scholar 

  18. Espejo W, Padilha J, Kidd K, Dorneles P, Barra R, Malm O, Chiang G, Celis J (2018) Trophic transfer of cadmium in marine food webs from western Chilean Patagonia and Antarctica. Mar Pollut Bull 137:246–251

    CAS  PubMed  Google Scholar 

  19. Commendatore MG, Esteves JL (2007) An assessment of oil pollution in the coastal zone of Patagonia, Argentina. Environ Manag 40:814–821

    Google Scholar 

  20. Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400:212–226

    CAS  PubMed  Google Scholar 

  21. Ahumada R, Ahumada-Rudolph R, González E (2015) Metals content (Ba, Cd, Co, Cr, Cu, Ni, Pb and Zn) in benthic organisms of pristine areas: southern ice fields (48°-50°S), Chile. Gayana 79:128–136

    Google Scholar 

  22. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Google Scholar 

  23. Logan JM, Jardine TD, Miller TJ, Bunn SE, Cunjak RA, Lutcavage ME (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838–846

    PubMed  Google Scholar 

  24. Wassenaar LI, Hendry MJ (2000) Mechanisms controlling the distribution and transport of 14C in a clay-rich till aquitard. Groundwater 38:343–349

    CAS  Google Scholar 

  25. Yoshinaga J, Suzuki T, Hongo T, Minagawav M, Ohtsuka R, Kawabe T, Inaoka T, Akimichi T (1992) Mercury concentration correlates with the nitrogen stable isotope ratio in the animal food of Papuans. Ecotox Environ Safe 24:37–45

    CAS  Google Scholar 

  26. Jardine TD, Kidd KA, O'Driscoll N (2013) Food web analysis reveals effects of pH on mercury bioaccumulation at multiple trophic levels in streams. Aquat Toxicol 132–133:46–52

    PubMed  Google Scholar 

  27. Borgå K, Kidd KA, Muir DC, Berglund O, Conder JM, Gobas FA, Kucklick J, Malm O, Powell DE (2012) Trophic magnification factors: considerations of ecology, ecosystems, and study design. Integr Environ Assess Manag 8:64–84

    PubMed  Google Scholar 

  28. Sall J, Stephens M, Lehman A, Loringet S (2017) JMP start statistics: a guide to statistics and data analysis using JMP. SAS Institute, Cary, NC

    Google Scholar 

  29. Primost MA, Gil MN, Bigatti G (2017) High bioaccumulation of cadmium and other metals in Patagonian edible gastropods. Mar Biol Res 13(7):774–781

    Google Scholar 

  30. Moreno JEA, Gerpe MS, Moreno VJ, Vodopivez C (1997) Heavy metals in Antarctic organisms. Polar Biol 17:131–140

    Google Scholar 

  31. Ip CCM, Li XD, Zhang G, Wong CSC, Zhang WL (2005) Heavy metal and Pb isotopic compositions of aquatic organisms in the Pearl River Estuary, South China. Environ Pollut 138:494–504

    CAS  PubMed  Google Scholar 

  32. Valdés J, Guiñez M, Castillo A, Vega SE (2014) Cu, Pb, and Zn content in sediments and benthic organisms from San Jorge Bay (northern Chile): accumulation and biotransference in subtidal coastal systems. Cienc Mar 40:45–58

    Google Scholar 

  33. Nygard T, Lie E, Rov N, Steinnes E (2001) Metal dynamics in an Antarctic food chain. Mar Pollut Bull 42:598–602

    CAS  PubMed  Google Scholar 

  34. Jerez S, Motas M, Palacios MJ, Valera F, Cuervo JJ (2011) Concentration of trace elements in feathers of three Antarctic penguins: geographical and interspecific differences. Environ Pollut 159:2412–2419

    CAS  PubMed  Google Scholar 

  35. Conti ME, Stripeikis J, Finoia M, Tudino M (2012) Baseline trace metals in gastropod mollusks from the Beagle Channel, Tierra del Fuego (Patagonia, Argentina). Ecotoxicol 21:1112–1125

    CAS  Google Scholar 

  36. Comoglio L, Amin O, Botté S, Marcovecchio J (2011) Use of biomarkers in resident organisms as a tool for environmental monitoring in a cold coastal system, Tierra del Fuego Island. Ecotoxicol Environ Saf 74:382–393

    CAS  PubMed  Google Scholar 

  37. Lemly AD (2002) Interpreting selenium concentrations. In: Alexander DE (ed) Selenium assessment in aquatic ecosystems: a guide for hazard evaluation and water quality criteria. Springer, New York, pp 18–38

    Google Scholar 

  38. Santos IR, Silvafilho EV, Schaefer C, Maria S, Silva CA, Gomes V, Passos MJ, Van Ngan P (2006) Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environ Pollut 140:304–311

    PubMed  Google Scholar 

  39. Rigby M, Deng X, Grieb T, Teh S, Hung S (2010) Effect threshold for selenium toxicity in juvenile splittail, Pogonichthys macrolepidotus A. Bull Environ Contam Toxicol 84:76–79

    CAS  PubMed  Google Scholar 

  40. Anan Y, Kunito T, Tanabe S, Mitrofanov I, Aubrey DG (2005) Trace element accumulation in fishes collected from coastal waters of the Caspian Sea. Mar Pollut Bull 51:882–888

    CAS  PubMed  Google Scholar 

  41. Majer AP, Petti MAV, Corbisier TN, Ribeiro AP, Theophilo CYS, de Lima Ferreira PA, Figueira RCL (2014) Bioaccumulation of potentially toxic trace elements in benthic organisms of Admiralty Bay (King George Island, Antarctica). Mar Pollut Bull 79:321–325

    CAS  PubMed  Google Scholar 

  42. Vergani L (2009) Metallothioneins in aquatic organisms: fish, crustaceans, molluscs, and echinoderms. Met Ions Life Sci 5:99–237

    Google Scholar 

  43. Agusa T, Matsumoto T, Ikemoto T, Anan Y, Kubota R, Yasunaga G, Kunito T, Tanabe S, Ogi H, Shibata Y (2005) Body distribution of trace elements in black-tailed gulls from Rishiri Island, Japan: age-dependent accumulation and transfer to feathers and eggs. Environmental Toxicology and Chemistry: An International Journal 24:2107–2120

    CAS  Google Scholar 

  44. Espejo W, Gonzalez-Acuña D, Banegas A, Barra R, Chiang G (2017) A global overview of exposure levels and biological effects of trace elements in penguins. Rev Environ Contam Toxicol 245:1–64

    CAS  Google Scholar 

  45. Del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the birds of the world, vol 1. Lynx Edicions, Barcelona

    Google Scholar 

  46. Cui B, Zhang Q, Zhang K, Liu X, Zhang H (2011) Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China. Environ Pollut 159:1297–1306

    CAS  PubMed  Google Scholar 

  47. Zeng Y, Huang X, Gu B, Zhang D, Zhang X, Ye F (2013) Analyzing biomagnification of heavy metals in food web from the Pearl River Estuary, South China by stable carbon and nitrogen isotopes. Fresenius Environ Bull 22:1652–1658

    CAS  Google Scholar 

  48. Zhao L, Yang F, Yan X (2013) Biomagnification of trace elements in a benthic food web: the case study of Deer Island (Northern Yellow Sea). Chem Ecol 29:197–207

    CAS  Google Scholar 

  49. Ikemoto T, Tu NPC, Watanabe MX, Okuda N, Omori K, Tanabe S, Takeuchi I (2008) Analysis of biomagnification of persistent organic pollutants in the aquatic food web of the Mekong Delta, South Vietnam using stable carbon and nitrogen isotopes. Chemosphere 72:104–114

    CAS  PubMed  Google Scholar 

  50. Marín-Guirao L, Lloret J, Marin A (2008) Carbon and nitrogen stable isotopes and metal concentration in food webs from a mining-impacted coastal lagoon. Sci Total Environ 393:118–130

    PubMed  Google Scholar 

  51. Asante KA, Agusa T, Kubota R, Mochizuki H, Ramu K, Nishida S, Tanabe S (2010) Trace elements and stable isotope ratios (δ13C and δ15N) in fish from deep-waters of the Sulu Sea and the Celebes Sea. Mar Pollut Bull 60:1560–1570

    CAS  PubMed  Google Scholar 

  52. Jara-Marini ME, Soto-Jiménez MF, Páez-Osuna F (2009) Trophic relationships and transference of cadmium, copper, lead and zinc in a subtropical coastal lagoon food web from SE Gulf of California. Chemosphere 77:1366–1373

    CAS  PubMed  Google Scholar 

Download references

Funding

The current study was supported by the Instituto Antártico Chileno (INACH) through project RG01-18 (J. Celis), the Vicerrectoría de Investigación y Desarrollo of the Universidad de Concepción through postdoc 219.153.026-P (W. Espejo) and by the Fondo Nacional de Ciencia y Tecnología (FONDECYT) through project 1161504 (G. Chiang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Celis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espejo, W., Padilha, J.d.A., Kidd, K.A. et al. Concentration and Trophic Transfer of Copper, Selenium, and Zinc in Marine Species of the Chilean Patagonia and the Antarctic Peninsula Area. Biol Trace Elem Res 197, 285–293 (2020). https://doi.org/10.1007/s12011-019-01992-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01992-0

Keywords

Navigation