Skip to main content
Log in

Changes in Trace Element Contents and Morphology in Bones of Duck Exposed to Molybdenum or/and Cadmium

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) and high molybdenum (Mo) can lead to adverse reactions on animals, but the coinduced toxicity of Mo and Cd to bone in ducks was not well understood. The objective of this study was to investigate the changes in trace elements’ contents and morphology in bones of duck exposed to Mo or/and Cd. One hundred twenty healthy 11-day-old male ducks were randomly divided into six groups and treated with commercial diet containing Cd or/and Mo. On the 60th and 120th days, the blood, excretion, and metatarsals were collected to determine alkaline phosphatase (ALP) activity and the contents of Mo, Cd, calcium (Ca), phosphorus (P), copper (Cu), iron (Fe), zine (Zn), and selenium (Se). In addition, metatarsals were subjected to histopathological analysis with the optical microscope and radiography. The results indicated that Mo and Cd contents significantly increased while Ca, P, Cu, and Se contents remarkably decreased in metatarsals in coexposure groups (P < 0.01). Contents of Fe and Zn in metatarsals had no significant difference among groups (P > 0.05). Ca content in serum had no significant difference among experimental groups (P > 0.05), but P content was significantly decreased in HMo and HMo + Cd groups (P < 0.05). Contents of Ca and P in excretion and ALP activity were significantly increased in coinduced groups (P < 0.05). Furthermore, osteoporotic lesions, less and thinner trabecular bone were observed in combination groups. The findings suggested that dietary of Cd or/and Mo could lead to bone damages in ducks via disturbing the balance of Ca and P in body and homeostasis of Cu, Fe, Zn, and Se in bones; moreover, the two elements showed a possible synergistic relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mertz W (1987) Trace elements in human and animal nutrition, vol 1. Academic Press, Orlando

  2. Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460(7257):839–847. doi:10.1038/nature08302

    Article  CAS  PubMed  Google Scholar 

  3. Hathcock JN (1997) Vitamin & mineral safety. Colgan chronicles

  4. Raisbeck MF, Siemion RS, Smith MA (2006) Modest copper supplementation blocks molybdenosis in cattle. J Vet Diagn Investig: Off Publ Am Assoc Vet Lab Diagn Inc 18(6):566–572

    Article  Google Scholar 

  5. Vyskocil A, Viau C (1999) Assessment of molybdenum toxicity in humans. J Appl Toxicol: JAT 19(3):185–192

    Article  CAS  PubMed  Google Scholar 

  6. Skibniewski M, Skibniewska EM, Kosla T, Olbrych K (2015) The content of copper and molybdenum in the liver, kidneys, and skeletal muscles of elk (Alces alces) from north-eastern Poland. Biol Trace Elem Res. doi:10.1007/s12011-015-0430-4

    PubMed  PubMed Central  Google Scholar 

  7. Xia B, Cao H, Luo J, Liu P, Guo X, Hu G, Zhang C (2015) The Co-induced effects of molybdenum and cadmium on antioxidants and heat shock proteins in duck kidneys. Biol Trace Elem Res 168(1):261–268. doi:10.1007/s12011-015-0348-x

    Article  CAS  PubMed  Google Scholar 

  8. Frank A (1998) ‘Mysterious’ moose disease in Sweden. Similarities to copper deficiency and/or molybdenosis in cattle and sheep. Biochemical background of clinical signs and organ lesions. Sci Total Environ 209(1):17–26

    Article  CAS  PubMed  Google Scholar 

  9. Dermience M, Lognay G, Mathieu F, Goyens P (2015) Effects of thirty elements on bone metabolism. J Trace Elem Med Biol: Organ Soc Miner Trace Elem 32:86–106. doi:10.1016/j.jtemb.2015.06.005

    Article  CAS  Google Scholar 

  10. Davies TD, Pickard J, Hall KJ (2005) Acute molybdenum toxicity to rainbow trout and other fish. J Environ Eng Sci 4(6):481–485(485)

    Article  CAS  Google Scholar 

  11. SWAN D, CREEPER J, WHITE C, RIDINGS M, SMITH G, COSTA N (1998) Molybdenum poisoning in feedlot cattle. Aust Vet J 76(5):345–349

    Article  CAS  PubMed  Google Scholar 

  12. Ytrehus B, Skagemo H, Stuve G, Sivertsen T, Handeland K, Vikoren T (1999) Osteoporosis, bone mineralization, and status of selected trace elements in two populations of moose calves in Norway. J Wildl Dis 35(2):204–211. doi:10.7589/0090-3558-35.2.204

    Article  CAS  PubMed  Google Scholar 

  13. Bernard A (2008) Cadmium & its adverse effects on human health. Indian J Med Res 128(4):557–564

    CAS  PubMed  Google Scholar 

  14. Wu X, Liang Y, Jin T, Ye T, Kong Q, Wang Z, Lei L, Bergdahl IA, Nordberg GF (2008) Renal effects evolution in a Chinese population after reduction of cadmium exposure in rice. Environ Res 108(2):233–238. doi:10.1016/j.envres.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  15. Chen X, Zhu G, Jin T, Lei L, Liang Y (2011) Bone mineral density is related with previous renal dysfunction caused by cadmium exposure. Environ Toxicol Pharmacol 32(1):46–53. doi:10.1016/j.etap.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  16. Velasquez-Vottelerd P, Anton Y, Salazar-Lugo R (2015) Cadmium affects the mitochondrial viability and the acid soluble thiols concentration in liver, kidney, heart and gills of Ancistrus brevifilis (Eigenmann, 1920). Open Vet J 5(2):166–172

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Staessen JA, Roels HA, Emelianov D, Kuznetsova T, Thijs L, Vangronsveld J, Fagard R (1999) Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. Public Health and Environmental Exposure to Cadmium (PheeCad) Study Group. Lancet (Lond Engl) 353(9159):1140–1144

    Article  CAS  Google Scholar 

  18. Tsuritani I, Honda R, Ishizaki M, Yamada Y, Kido T, Nogawa K (1992) Impairment of vitamin D metabolism due to environmental cadmium exposure, and possible relevance to sex-related differences in vulnerability to the bone damage. J Toxicol Environ Health 37(4):519–533. doi:10.1080/15287399209531690

    Article  CAS  PubMed  Google Scholar 

  19. Brzoska MM, Moniuszko-Jakoniuk J (2005) Disorders in bone metabolism of female rats chronically exposed to cadmium. Toxicol Appl Pharmacol 202(1):68–83. doi:10.1016/j.taap.2004.06.007

    Article  CAS  PubMed  Google Scholar 

  20. Wu Q, Magnus JH, Hentz JG (2010) Urinary cadmium, osteopenia, and osteoporosis in the US population. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos National Osteoporos Found USA 21(8):1449–1454. doi:10.1007/s00198-009-1111-y

    Article  CAS  Google Scholar 

  21. Suntararuks S, Yoopan N, Rangkadilok N, Worasuttayangkurn L, Nookabkaew S, Satayavivad J (2008) Immunomodulatory effects of cadmium and Gynostemma pentaphyllum herbal tea on rat splenocyte proliferation. J Agric Food Chem 56(19):9305–9311. doi:10.1021/jf801062z

    Article  CAS  PubMed  Google Scholar 

  22. Xia B, Chen H, Hu G, Wang L, Cao H, Zhang C (2015) The co-induced effects of molybdenum and cadmium on the trace elements and the mRNA expression levels of CP and MT in duck testicles. Biol Trace Elem Res. doi:10.1007/s12011-015-0410-8

    Google Scholar 

  23. Cao H, Zhang M, Xia B, Xiong J, Zong Y, Hu G, Zhang C (2015) Effects of molybdenum or/and cadmium on mRNA expression levels of inflammatory cytokines and HSPs in duck spleens. Biol Trace Elem Res. doi:10.1007/s12011-015-0442-0

    Google Scholar 

  24. Nadeenko VG, Lenchenko VG, Genkina SB, Arkhipenko TA (1978) Effect of wolfram, molybdenum, copper and arsenic on intrauterine fetal development. Farmakol Toksikologiia 41(5):620–623

    CAS  Google Scholar 

  25. Hosokawa S, Yoshida O (1994) Clinical studies on molybdenum in patients requiring long-term hemodialysis. ASAIO J Am Soc Artif Intern Organs: 1992 40(3):M445–M449

    Article  CAS  Google Scholar 

  26. Arita S, Ikeda S, Sakai A, Okimoto N, Akahoshi S, Nagashima M, Nishida A, Ito M, Nakamura T (2004) Human parathyroid hormone (1-34) increases mass and structure of the cortical shell, with resultant increase in lumbar bone strength, in ovariectomized rats. J Bone Miner Metab 22(6):530–540. doi:10.1007/s00774-004-0520-4

    Article  CAS  PubMed  Google Scholar 

  27. Blumenthal NC, Cosma V, Skyler D, LeGeros J, Walters M (1995) The effect of cadmium on the formation and properties of hydroxyapatite in vitro and its relation to cadmium toxicity in the skeletal system. Calcif Tissue Int 56(4):316–322

    Article  CAS  PubMed  Google Scholar 

  28. Wiren KM, Toombs AR, Semirale AA, Zhang X (2006) Osteoblast and osteocyte apoptosis associated with androgen action in bone: requirement of increased Bax/Bcl-2 ratio. Bone 38(5):637–651. doi:10.1016/j.bone.2005.10.029

    Article  CAS  PubMed  Google Scholar 

  29. Uchida H, Kurata Y, Hiratsuka H, Umemura T (2010) The effects of a vitamin D-deficient diet on chronic cadmium exposure in rats. Toxicol Pathol 38(5):730–737. doi:10.1177/0192623310374328

    Article  CAS  PubMed  Google Scholar 

  30. Marieb EN (2005) Anatomie et physiologies humaines, 6th edn. Pearson Education limited, Paris

    Google Scholar 

  31. Martin A (2000) Apports Nutritionnels Conseillés Pour La Population Franc ¸ aise,Third éd. Tec & Doc Editions, Paris

  32. Riis BJ (1996) The role of bone turnover in the pathophysiology of osteoporosis. Br J Obstet Gynaecol 103(Suppl 13):9–14 discussion 14-15

    PubMed  Google Scholar 

  33. Huttunen MM, Pietila PE, Viljakainen HT, Lamberg-Allardt CJ (2006) Prolonged increase in dietary phosphate intake alters bone mineralization in adult male rats. J Nutr Biochem 17(7):479–484. doi:10.1016/j.jnutbio.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  34. Karp HJ, Vaihia KP, Karkkainen MU, Niemisto MJ, Lamberg-Allardt CJ (2007) Acute effects of different phosphorus sources on calcium and bone metabolism in young women: a whole-foods approach. Calcif Tissue Int 80(4):251–258. doi:10.1007/s00223-007-9011-7

    Article  CAS  PubMed  Google Scholar 

  35. Tiffany ME, McDowell LR, O’Connor GA, Martin FG, Wilkinson NS, Percival SS, Rabiansky PA (2002) Effects of residual and reapplied biosolids on performance and mineral status of grazing beef steers. J Anim Sci 80(1):260–269

    Article  CAS  PubMed  Google Scholar 

  36. Kazantzis G (2004) Cadmium, osteoporosis and calcium metabolism. Biometals: Int J Role Metal Ions Biol Biochem Med 17(5):493–498

    Article  CAS  Google Scholar 

  37. Wu X, Jin T, Wang Z, Ye T, Kong Q, Nordberg G (2001) Urinary calcium as a biomarker of renal dysfunction in a general population exposed to cadmium. J Occup Environ Med/Am Coll Occup Environ Med 43(10):898–904

    Article  CAS  Google Scholar 

  38. Brzoska MM, Moniuszko-Jakoniuk J (2005) Bone metabolism of male rats chronically exposed to cadmium. Toxicol Appl Pharmacol 207(3):195–211. doi:10.1016/j.taap.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  39. Tilgar V, Kilgas P, Viitak A, Reynolds SJ (2008) The rate of bone mineralization in birds is directly related to alkaline phosphatase activity. Physiol Biochem Zool: PBZ 81(1):106–111. doi:10.1086/523305

    Article  CAS  PubMed  Google Scholar 

  40. Pedrazzoni M, Alfano FS, Girasole G, Giuliani N, Fantuzzi M, Gatti C, Campanini C, Passeri M (1996) Clinical observations with a new specific assay for bone alkaline phosphatase: a cross-sectional study in osteoporotic and pagetic subjects and a longitudinal evaluation of the response to ovariectomy, estrogens, and bisphosphonates. Calcif Tissue Int 59(5):334–338

    Article  CAS  PubMed  Google Scholar 

  41. Bersenyi A, Berta E, Kadar I, Glavits R, Szilagyi M, Fekete SG (2008) Effects of high dietary molybdenum in rabbits. Acta Vet Hung 56(1):41–55. doi:10.1556/AVet.56.2008.1.5

    Article  CAS  PubMed  Google Scholar 

  42. Kiersztan A, Winiarska K, Drozak J, Przedlacka M, Wegrzynowicz M, Fraczyk T, Bryla J (2004) Differential effects of vanadium, tungsten and molybdenum on inhibition of glucose formation in renal tubules and hepatocytes of control and diabetic rabbits: beneficial action of melatonin and N-acetylcysteine. Mol Cell Biochem 261(1–2):9–21

    Article  CAS  PubMed  Google Scholar 

  43. Tsuritani I, Honda R, Ishizaki M, Yamada Y, Aoshima K, Kasuya M (1994) Serum bone-type alkaline phosphatase activity in women living in a cadmium-polluted area. Toxicol Lett 71(3):209–216

    Article  CAS  PubMed  Google Scholar 

  44. Qiu J, Zhu G, Chen X, Shao C, Gu S (2012) Combined effects of gamma-irradiation and cadmium exposures on osteoblasts in vitro. Environ Toxicol Pharmacol 33(2):149–157. doi:10.1016/j.etap.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  45. Gomez B Jr, Ardakani S, Ju J, Jenkins D, Cerelli MJ, Daniloff GY, Kung VT (1995) Monoclonal antibody assay for measuring bone-specific alkaline phosphatase activity in serum. Clin Chem 41(11):1560–1566

    CAS  PubMed  Google Scholar 

  46. Torres MA, Barros MP, Campos SC, Pinto E, Rajamani S, Sayre RT, Colepicolo P (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71(1):1–15. doi:10.1016/j.ecoenv.2008.05.009

    Article  CAS  PubMed  Google Scholar 

  47. Alghadir AH, Gabr SA, Al-Eisa ES, Alghadir MH (2016) Correlation between bone mineral density and serum trace elements in response to supervised aerobic training in older adults. Clin Interv Aging 11:265–273. doi:10.2147/cia.s100566

    PubMed  PubMed Central  Google Scholar 

  48. Harris MM, Houtkooper LB, Stanford VA, Parkhill C, Weber JL, Flint-Wagner H, Weiss L, Going SB, Lohman TG (2003) Dietary iron is associated with bone mineral density in healthy postmenopausal women. J Nutr 133(11):3598–3602

    CAS  PubMed  Google Scholar 

  49. Medeiros DM, Plattner A, Jennings D, Stoecker B (2002) Bone morphology, strength and density are compromised in iron-deficient rats and exacerbated by calcium restriction. J Nutr 132(10):3135–3141

    CAS  PubMed  Google Scholar 

  50. Nemmiche S, Chabane-Sari D, Kadri M, Guiraud P (2011) Cadmium chloride-induced oxidative stress and DNA damage in the human Jurkat T cell line is not linked to intracellular trace elements depletion. Toxicol Vitro: Int J Published Assoc BIBRA 25(1):191–198. doi:10.1016/j.tiv.2010.10.018

    Article  CAS  Google Scholar 

  51. Suzuki KT, Ohnuki R, Yaguchi K, Yamada YK (1983) Accumulation and chemical forms of cadmium and its effect on essential metals in rat spleen and pancreas. J Toxicol Environ Health 11(4–6):727–737. doi:10.1080/15287398309530380

    Article  CAS  PubMed  Google Scholar 

  52. Cardin CJ, Mason J (1976) Molybdate and tungstate transfer by rat ileum. Competitive inhibition by sulphate. Biochim Biophys Acta 455(3):937–946

    Article  CAS  PubMed  Google Scholar 

  53. Ellingsen DG, Thomassen Y, Aaseth J, Alexander J (1997) Cadmium and selenium in blood and urine related to smoking habits and previous exposure to mercury vapour. J Appl Toxicol: JAT 17(5):337–343

    Article  CAS  PubMed  Google Scholar 

  54. Yang C, Wolf E, Roser K, Delling G, Muller PK (1993) Selenium deficiency and fulvic acid supplementation induces fibrosis of cartilage and disturbs subchondral ossification in knee joints of mice: an animal model study of Kashin-Beck disease. Virchows Archiv A Pathological Anat Histopathol 423(6):483–491

    Article  CAS  Google Scholar 

  55. Aaseth J, Boivin G, Andersen O (2012) Osteoporosis and trace elements--an overview. J Trace Elem Med Biol: Organ Soc Miner Trace Elem 26(2–3):149–152. doi:10.1016/j.jtemb.2012.03.017

    Article  CAS  Google Scholar 

  56. Dollwet HH, Sorenson JR (1988) Roles of copper in bone maintenance and healing. Biol Trace Elem Res 18:39–48

    Article  CAS  PubMed  Google Scholar 

  57. Underwood EJ (1971) Trace elements in human and animal nutrition. Academic Press, New York

    Google Scholar 

  58. Ma ZJ, Yamaguchi M (2001) Role of endogenous zinc in the enhancement of bone protein synthesis associated with bone growth of newborn rats. J Bone Miner Metab 19(1):38–44

    Article  CAS  PubMed  Google Scholar 

  59. Satarug S, Haswell-Elkins MR, Moore MR (2000) Safe levels of cadmium intake to prevent renal toxicity in human subjects. Br J Nutr 84(6):791–802

    CAS  PubMed  Google Scholar 

  60. Atan D, Atan T, Ozcan KM, Ensari S, Dere H (2015) Relation of otosclerosis and osteoporosis: a bone mineral density study. Auris Nasus Larynx. doi:10.1016/j.anl.2015.11.001

    PubMed  Google Scholar 

  61. Zaichkina SI, Rozanova OM, Aptikaeva GF, Akhmadieva A, Klokov D, Smirnova EN (2001) Induction of cytogenetic damages by combined action of heavy metal salts, chronic and acute gamma irradiation in bone marrow cells of mice and rats. Radiats Biol Radioecol/Rossiiskaia Akademiia Nauk 41(5):514–518

    CAS  Google Scholar 

  62. Yuan G, Lu H, Yin Z, Dai S, Jia R, Xu J, Song X, Li L (2014) Effects of mixed subchronic lead acetate and cadmium chloride on bone metabolism in rats. Int J Clin Exp Med 7(5):1378–1385

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31260625, Beijing, People’s Republic of China), the Technology R&D Program of Jiangxi Province (20122BBF60078), and Training Plan for Young Scientists of Jiangxi province (No. 2014BCB23040, Nanchang, People’s Republic of China). The authors thank all members of the research group in the clinical veterinary medicine laboratory in the College of Animal Science and Technology, Jiangxi Agricultural University, for help in the experimental process.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoliang Hu or Caiying Zhang.

Ethics declarations

All animal care and experimental procedures were approved by the institutional ethics committee of Jiangxi Agricultural University.

Conflict of Interest Statement

The authors declare that there are no conflicts of interest.

Additional information

Yilin Liao, Huabin Cao, and Bing Xia are the equal first authors.

All authors have read the manuscript and agreed to submit it in its current form for consideration for publication in the Journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Cao, H., Xia, B. et al. Changes in Trace Element Contents and Morphology in Bones of Duck Exposed to Molybdenum or/and Cadmium. Biol Trace Elem Res 175, 449–457 (2017). https://doi.org/10.1007/s12011-016-0778-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0778-0

Key Words

Navigation