Skip to main content

Advertisement

Log in

Role of PTEN-Akt-CREB Signaling Pathway in Nervous System impairment of Rats with Chronic Arsenite Exposure

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The nervous system is a target of arsenic toxicity. Phosphatase and tensin homologue deleted on chromosome 10/protein kinase B/cAMP-response element binding protein (PTEN/Akt/CREB) signaling pathway has been reported to be involved in maintaining normal function of the nervous system, modulating growth and proliferation of neurocyte, regulating neuron synaptic plasticity, and long-term memory. And many studies have demonstrated that expressions of PTEN, Akt, and CREB protein were influenced by arsenic, but it is not clear whether this signaling pathway is involved in the nervous system impairment of rats induced by chronic arsenite exposure, and we have addressed this in this study. Eighty male Sprague-Dawley (SD) rats were randomly divided into eight groups (n = 10 each), four groups exposed to NaAsO2 (0, 5, 10, and 50 mg/L NaAsO2 in drinking water) for 3 months, the other four groups exposed to NaAsO2 (0, 5, 10, 50 mg/L NaAsO2 in drinking water) for 6 months. Hematoxylin and eosin (HE) staining showed that chronic arsenite exposure induced varying degrees of damage in cerebral neurons. And arsenite exposure increased arsenic amount in serum and brain samples in a dose- and time-dependent manner. Moreover, the protein levels of PTEN and Akt in brain tissue were not significantly changed compared with the control group, but p-Akt, CREB, and p-CREB were all significantly downregulated in arsenite-exposed groups with a dose-dependent pattern. These results suggested that chronic arsenite exposure negatively regulated the PTEN-Akt-CREB signaling pathway, and dysfunction of the signaling pathway might be one of the mechanisms of nervous system impairment induced by chronic arsenite exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kinniburgh DG, Kosmus W (2002) Arsenic contamination in groundwater: some analytical considerations. Talanta 58:165–180

    Article  CAS  PubMed  Google Scholar 

  2. Del Razo LM, Corona JC, García-Vargas G, et al (1993) Fluoride levels in well-water from a chronic arsenicism area of northern Mexico. Environ Pollut 80:91–94

    Article  PubMed  Google Scholar 

  3. Namgung U, Xia Z (2001) Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol Appl Pharmacol 174:130–138

    Article  CAS  PubMed  Google Scholar 

  4. Tyler CR, Allan AM (2014) The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep 21:132–147

    Article  Google Scholar 

  5. Calderón J, Navarro ME, Jimenez-Capdeville ME, et al (2001) Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res 85:69–76

    Article  PubMed  Google Scholar 

  6. Rodríguez VM, Jiménez-Capdeville ME, Giordano M (2003) The effects of arsenic exposure on the nervous system. Toxicol Lett 145:1–18

    Article  PubMed  Google Scholar 

  7. Jing J, Zheng G, Liu M, et al (2012) Changes in the synaptic structure of hippocampal neurons and impairment of spatial memory in a rat model caused by chronic arsenite exposure. Neurotoxicology 33:1230–1238

    Article  CAS  PubMed  Google Scholar 

  8. Rodríguez VM, Carrizales L, Jiménez-Capdeville ME, et al (2001) The effects of sodium arsenite exposure on behavioral parameters in the rat. Brain Res Bull 55:301–308

    Article  PubMed  Google Scholar 

  9. Wlodarczyk B, Bennett GD, Calvin JA, et al (1996) Arsenic-induced alterations in embryonic transcription factor gene expression: implications for abnormal neural development. Dev Genet 18:306–315

    Article  CAS  Google Scholar 

  10. Li J, Yen C, Liaw D, et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    Article  CAS  PubMed  Google Scholar 

  11. Alonso A, Sasin J, Bottini N, et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    Article  CAS  PubMed  Google Scholar 

  12. Andersen JN, Jansen PG, Echwald SM, et al (2004). A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. FASEB J 18: 8–30

  13. Sano T, Lin H, Chen X, et al (1999) Differential expression of MMAC/PTEN in glioblastoma multiforme: relationship to localization and prognosis. Cancer Res 59:1820–1824

    CAS  PubMed  Google Scholar 

  14. Gimm O, Attie-Bitach T, Lees JA, et al (2000) Expression of the PTEN tumor suppressor protein during human development. Hum Mol Genet 9:1633–1639

    Article  CAS  PubMed  Google Scholar 

  15. Backman SA, Stambolic V, Suzuki A, et al (2001) Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nat Genet 29:396–403

    Article  CAS  PubMed  Google Scholar 

  16. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    Article  CAS  PubMed  Google Scholar 

  17. Maehama T, Dixon JE (1999) PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 9:125–128

    Article  CAS  PubMed  Google Scholar 

  18. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  CAS  PubMed  Google Scholar 

  19. Manji HK, Quiroz JA, Sporn J, et al (2003) Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 53:707–742

    Article  CAS  PubMed  Google Scholar 

  20. Fukushima T, Liu RY, Byrne JH (2007) Transforming growth factor-beta2 modulates synaptic efficacy and plasticity and induces phosphorylation of CREB in hippocampal neurons. Hippocampus 17:5–9

    Article  CAS  PubMed  Google Scholar 

  21. Wei Zhang, Hongqi Feng, Yanhui Gao, et al (2013). Role of pigment epithelium-derived factor (PEDF) in arsenic-induced cell apoptosis of liver and brain in a rat model. Biol Trace Elem Res 151:269–276

  22. Cui X, Li S, Shraim A, et al (2004) Subchronic exposure to arsenic through drinking water alters expression of cancer-related genes in rat liver. Toxicol Pathol 32:64–72

    Article  CAS  PubMed  Google Scholar 

  23. Tokar EJ, Diwan BA, Waalkes MP (2010) Arsenic exposure transforms human epithelial stem/progenitor cells into a cancer stem-like phenotype. Environ Health Perspect 118:108–115

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu Y, Wang F, Zhao Z, et al (2011) BIM-mediated AKT phosphorylation is a key modulator of arsenic trioxide-induced apoptosis in cisplatin-sensitive and -resistant ovarian cancer cells. Plos One 6:1–14

    Article  Google Scholar 

  25. Redondo-Munoz J, Escobar-Diaz E, Hernandez Del CM, et al (2010) Induction of B-chronic lymphocytic leukemia cell apoptosis by arsenic trioxide involves suppression of the phosphoinositide 3-kinase/Akt survival pathway via c-jun-NH2 terminal kinase activation and PTEN upregulation. Clin Cancer Res 16:4382–4391

    Article  CAS  PubMed  Google Scholar 

  26. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    Article  CAS  PubMed  Google Scholar 

  27. Edelman GM, Gally JA (1992) Nitric oxide: linking space and time in the brain. Proc Natl Acad Sci U S A 89:11651–11652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  29. Zarazúa S, Pérez-Severiano F, Dwlgado JM, et al (2006) Decreased nitric oxide production in the rat brain after chronic arsenic exposure. Neurochem Res 31:1069–1077

    Article  PubMed  Google Scholar 

  30. Wang Y, Zhao F, Jin Y, et al (2011) Effects of exogenous glutathione on arsenic burden and NO metabolism in brain of mice exposed to arsenite through drinking water. Arch Toxicol 85:177–184

    Article  CAS  PubMed  Google Scholar 

  31. Kwak Y-D, Ma T, Diao S, et al (2010) NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration. Molecular Neurodegeneration 5:49–60

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wu J, Ji Z, Liu H, et al (2013) Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of notch pathway. Toxicol Lett 220:61–69

    Article  CAS  PubMed  Google Scholar 

  33. Gwak H-S, Park M-J, Park I-C, et al (2014) Tetraarsenic oxide-induced inhibition of malignant glioma cell invasion in vitro via a decrease in matrix metalloproteinase secretion and protein kinase B phosphorylation. J Neurosurg 121:1483–1491

    Article  CAS  PubMed  Google Scholar 

  34. Xue P, Hou Y, Zhang Q, et al (2011) Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: involvement of the adaptive antioxidant response. Biochem Biophys Res Commun 407:360–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Habib GM (2010) Arsenite causes down-regulation of Akt and c-Fos, cell cycle dysfunction and apoptosis in glutathione-deficient cells. J Cell Biochem 110:363–371

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kida S (2012) A functional role for CREB as a positive regulator of memory formation and LTP. Exp Neurobiol 21:136–140

    Article  PubMed  PubMed Central  Google Scholar 

  37. Che X, Liu J, Huang H, et al (2013) p27 suppresses cyclooxygenase-2 expression by inhibiting p38β and p38δ-mediated CREB phosphorylation upon arsenite exposure. Biochim Biophys Acta 1833:2083–2091

    Article  CAS  PubMed  Google Scholar 

  38. Todorovski Z, Asrar S, Liu J, et al (2015). LIMK1 regulates long-term memory and synaptic plasticity via the transcriptional factor CREB. Mol Cell Biol

  39. Yamamoto Y, Shioda N, Han F, et al. (2009) Nobiletin improves brain ischemia-induced learning and memory deficits through stimulation of CaMKII and CREB phosphorylation. Brain Res 1295:218–229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no. 81273013).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianjun Sun.

Additional information

All other authors have read the manuscript and have agreed to submit it in its current form for consideration for publication in the Journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, L., Gao, Y., Sun, H. et al. Role of PTEN-Akt-CREB Signaling Pathway in Nervous System impairment of Rats with Chronic Arsenite Exposure. Biol Trace Elem Res 170, 366–372 (2016). https://doi.org/10.1007/s12011-015-0478-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0478-1

Keywords

Navigation