Skip to main content
Log in

Optimisation of Direct Copper Determination in Human Breast Milk Without Digestion by Zeeman Graphite Furnace Atomic Absorption Spectrophotometry with Two Chemical Modifiers

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Milk is an important food in the human diet, and copper (Cu) in human milk is indispensable to children's normal growth and development. It is consequently important that Cu deficiency, occurring in malnourished women or in malabsorption following bariatric surgery, be prevented. The objective of this work is to provide hospital-based paediatricians with a tool enabling rapid measurement of Cu in human breast milk through a technique that biology laboratories can easily apply. Using electrothermal atomic absorption spectrophotometry with Zeeman correction, we have optimized this method with two chemical modifiers and without digestion for analytical procedure. Detection limits and quantification limits for Cu in human milk were found to be 0.077 and 0.26 μmol/L, respectively. Within-run (n = 30) and between-run (n = 15) variations in a pool of human milk samples were 1.50 and 3.62 %, respectively. Average recoveries ranged from 98.67 to 100.61 %. The reliability of this method was also confirmed by analysing certified reference material (10 %). In breast milk samples collected from 100 lactating mothers, Cu mean (±1 SD) was 7.09 ± 1.60 μmol/L. In conclusion, with minimal preparation and quick determination, the method proposed is suitable for measurement of Cu in human breast milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

EAAS:

Electrothermal atomic absorption spectrometry

ICP-MS:

Inductively coupled plasma with mass spectrometry

LOD:

Lower limit of detection

LOQ:

Lower limit of quantification

NAA:

Neutron activation analysis

NIST:

National Institute of Standards and Technology

SRM:

Standard reference material®

ZEAAS:

Zeeman electrothermal atomic absorption spectrophotometry

References

  1. Picciano MF, Guthrie HA (1976) Copper, iron, and zinc contents of mature human milk. Am J Clin Nutr 29(3):242–254

    CAS  PubMed  Google Scholar 

  2. Wasowicz W, Gromadzinska J, Szram K, Rydzynski K, Cieslak J, Pietrzak Z (2001) Selenium, zinc, and copper concentrations in the blood and milk of lactating women. Biol Trace Elem Res 79(3):221–233

    Article  CAS  PubMed  Google Scholar 

  3. Keen CL, Uriu-Hare JY, Hawk SN, Jankowski MA, Daston GP, Kwik-Uribe CL, Rucker RB (1998) Effect of copper deficiency on prenatal development and pregnancy outcome. Am J Clin Nutr 67(5):1003S–1011S

    CAS  PubMed  Google Scholar 

  4. Domellöf M, Lönnerdal B, Dewey KJ, Cohen RJ, Hernell O (2004) Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. Am J Clin Nutr 79(1):111–115

    PubMed  Google Scholar 

  5. Gaud MA, Frasquet-Darrieux M, Glomot F, Bucco C, Christin P, Compain F, Pierre F, Ingrand P, Hankard R (2012) Gestational weight gain: arguments for a trangenerational weight-control process. Am J Clin Nutr 95(2):529–531

    Article  CAS  PubMed  Google Scholar 

  6. Shaw JCL (1980) Trace elements in the fetus and young infant. II. Copper, manganese, selenium, and chromium. Am J Dis Child 134(1):74–81

    Article  CAS  PubMed  Google Scholar 

  7. Walravens PA (1980) Nutritional importance of copper and zinc in neonates and infants. Clin Chem 26(2):185–189

    CAS  PubMed  Google Scholar 

  8. Pineau A, Guillard O, Chappuis P, Arnaud J, Zawislak R (1993) Sampling conditions for biological fluids for trace element monitoring in hospital patients: a critical approach. Crit Rev Clin Lab Sci 30(3):203–222

    Article  CAS  PubMed  Google Scholar 

  9. Vartianen T, Saarikoski S, Jaakkola J, Tuomisto J (1997) PCDD, PCDF, and PCB concentrations in human milk from two areas of Finland. Chemosphere 34(12):2571–2583

    Article  Google Scholar 

  10. Weber JP (1988) An interlaboratory comparison program for several toxic substances in blood and urine. Sci Total Environ 71(1):111–123 

    Article  CAS  PubMed  Google Scholar 

  11. Danzer K, Currie LA (1998) Guidelines for calibration in analytical chemistry. Pure Appl Chem 70(4):993–1014

  12. Arnaud J, Favier A (1995) Copper, iron, manganese and zinc contents in human colostrum and transitory milk of french women. Sci Total Environ 159(1):9–15

    Article  CAS  PubMed  Google Scholar 

  13. Robberecht H, Benemariya H, Deelstra H (1995) Daily dietary intake of copper, zinc, and selenium of exclusively breast-fed infants of middle-class women in Burundi, Africa. Biol Trace Elem Res 49(2):151–159

    Article  CAS  PubMed  Google Scholar 

  14. Spevackova V, Rychlik S, Cejchanova M, Spevacek V (2005) Monitoring of trace elements in breast milk sampling and measurement procedures. Cent J Pub Health 13(2):85–88

    CAS  Google Scholar 

  15. Campillo N, Viñas P, López-García I, Hernández-Córdoba M (1998) Direct determination of copper and zinc in cow milk, human milk and infant formula samples using electrothermal atomization atomic absorption spectrometry. Talanta 46(4):615–622

    Article  CAS  PubMed  Google Scholar 

  16. Kantola M, Vartiainen T (2001) Changes in selenium, zinc, copper and cadmium contents in human milk during the time when selenium has been supplemented to fertilizers in Finland. J Trace Elem Med Biol 15(1):11–17

    Article  CAS  Google Scholar 

  17. Welz B, Schlemmer G, Mudakavi JR (1992) Palladium nitrate–magnesium nitrate modifier for electrothermal atomic absorption spectrometry. J Anal At Spectrom 7:1257–1271

    Article  CAS  Google Scholar 

  18. Schlemmer G, Welz B (1986) Palladium and magnesium nitrates, a more universal modifier for graphite furnace atomic absorption spectrometry. Spectrochim Acta, Part B(41):1157–1165

  19. Hannan M, Dogadkin NN, Ashur IA, Markus WM (2005) Copper, selenium, and zinc concentrations in human milk during the first three weeks of lactation. Biol Trace Elem Res 107(1):11–20

    Article  CAS  PubMed  Google Scholar 

  20. Krachler M, Prohask T, Koellensperger G, Rossipal E, Stingeder G (2000) Concentrations of selected trace elements in human milk and in infant formulas determined by magnetic sector field inductively coupled plasma–mass spectrometry. Biol Trace Elem Res 76(2):97–112

    Article  CAS  PubMed  Google Scholar 

  21. Yamawaki N, Yamada M, Kan-no T, Kojima T, Kaneko T, Yonekubo A (2005) Macronutrient, mineral and trace element composition of breast milk from Japanese women. J Trace Elem Med Biol 19(2–3):171–181

    Article  CAS  PubMed  Google Scholar 

  22. Husáková L, Urbanová I, Šrámková J, Konečná M, Bohuslavová J (2013) Multi-element analysis of milk by ICP-oa-TOF-MS after precipitation of calcium and proteins by oxalic and nitric acid. Talanta 106(15):66–72

    Article  PubMed  Google Scholar 

  23. Khan N, Jeong IS, Hwang IM, Kim JS, Choi SH, Nho EY, Choi JY, Park KS, Kim KS (2014) Analysis of minor and trace elements in milk and yogurts by inductively coupled plasma-mass spectrometry (ICP-MS). Food Chem 147(15):220–224

    Article  CAS  PubMed  Google Scholar 

  24. Kim SY, Park JH, Kim EA, Lee-Kim YC (2012) Longitudinal study on trace mineral compositions (selenium, zinc, copper, manganese) in Korean human preterm milk. J Korean Med Sci 27(5):532–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Guillard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineau, A., Fauconneau, B., Marrauld, A. et al. Optimisation of Direct Copper Determination in Human Breast Milk Without Digestion by Zeeman Graphite Furnace Atomic Absorption Spectrophotometry with Two Chemical Modifiers. Biol Trace Elem Res 166, 119–122 (2015). https://doi.org/10.1007/s12011-015-0249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0249-z

Keywords

Navigation