Skip to main content
Log in

Selenium Deficiency Influences the Gene Expressions of Heat Shock Proteins and Nitric Oxide Levels in Neutrophils of Broilers

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the effects of selenium (Se) deficiency on the expressions of heat shock proteins (Hsp90, 70, 60, 40, and 27) and nitric oxide (NO) levels in neutrophils of broilers. One hundred eighty 1-day-old broilers were randomly assigned into two groups and were fed on a low-Se diet (0.008 mg/kg Se) or a control diet (0.2 mg/kg Se), respectively. Then, the messenger RNA (mRNA) levels of Hsp90, 70, 60, 40, and 27, induced nitric oxide synthase (iNOS), and NO levels were examined. The results showed that Se deficiency increased the mRNA levels of Hsps and iNOS and induced higher level of NO in chicken neutrophils (P < 0.05). It showed that the expression of Hsp40 increased higher than other Hsps in neutrophils, which indicated that it might play the crucial protective role in neutrophils. In addition, correlation analysis showed that iNOS had the biggest correlation with Hsp60, which indicated that Hsp60 might play an important function in inhibiting the production of NO, and the correlation coefficient between Hsp60 and Hsp70 was over 0.9, which indicated that they might have a synergistic effect. These results suggested that the level of NO and Hsp expression levels in neutrophils can be influenced by Se deficiency. And Hsp40 might play the crucial protective role in neutrophils induced by Se deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marsh JA, Combs GF Jr, Whitacre ME, Dietert RR (1986) Effect of selenium and vitamin E dietary deficiencies on chick lymphoid organ development. Proceedings of the Society for Experimental Biology and Medicine. Soc Exp Biol Med 182:425–436

    Article  CAS  Google Scholar 

  2. Sheffy BE, Schultz RD (1979) Influence of vitamin E and selenium on immune response mechanisms. Fed Proc 38:2139–2143

    CAS  PubMed  Google Scholar 

  3. Zhang ZW, Wang QH, Zhang JL et al (2012) Effects of oxidative stress on immunosuppression induced by selenium deficiency in chickens. Biol Trace Elem Res 149:352–361

    Article  CAS  PubMed  Google Scholar 

  4. Chang WP, Hom JS, Dietert RR, Combs GF Jr, Marsh JA (1994) Effect of dietary vitamin E and selenium deficiency on chicken splenocyte proliferation and cell surface marker expression. Immunopharmacol Immunotoxicol 16:203–223

    Article  CAS  PubMed  Google Scholar 

  5. Jaillon S, Galdiero MR, Del Prete D et al (2013) Neutrophils in innate and adaptive immunity. Semin Immunopathol 35:377–394

    Article  CAS  PubMed  Google Scholar 

  6. Bernabo P, Rebecchi L, Jousson O, Martinez-Guitarte JL, Lencioni V (2011) Thermotolerance and hsp70 heat shock response in the cold-stenothermal chironomid Pseudodiamesa branickii (NE Italy). Cell Stress Chaperones 16:403–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Asea A, Kraeft SK, Kurt-Jones EA et al (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  CAS  PubMed  Google Scholar 

  8. Campisi J, Fleshner M (2003) Role of extracellular HSP72 in acute stress-induced potentiation of innate immunity in active rats. J Appl Physiol 94:43–52

    CAS  PubMed  Google Scholar 

  9. Schett G, Metzler B, Kleindienst R et al (1999) Myocardial injury leads to a release of heat shock protein (hsp) 60 and a suppression of the anti-hsp65 immune response. Cardiovasc Res 42:685–695

    Article  CAS  PubMed  Google Scholar 

  10. Jiang J, Xie D, Zhang W, Xiao G, Wen J (2013) Fusion of Hsp70 to Mage-a1 enhances the potency of vaccine-specific immune responses. J Transl Med 11:300

    Article  PubMed Central  PubMed  Google Scholar 

  11. Black PH, Garbutt LD (2002) Stress, inflammation and cardiovascular disease. J Psychosom Res 52:1–23

    Article  PubMed  Google Scholar 

  12. Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80:183–201

    Article  CAS  PubMed  Google Scholar 

  13. Zhao FQ, Zhang ZW, Yao HD et al (2013) Effects of cold stress on mRNA expression of immunoglobulin and cytokine in the small intestine of broilers. Res Vet Sci 95:146–155

    Article  CAS  PubMed  Google Scholar 

  14. Hoffman RA, Mahidhara RS, Wolf-Johnston AS et al (2002) Differential modulation of CD4 and CD8 T-cell proliferation by induction of nitric oxide synthesis in antigen presenting cells. Transplantation 74:836–845

    Article  CAS  PubMed  Google Scholar 

  15. Kim IY, Stadtman TC (1997) Inhibition of NF-kappaB DNA binding and nitric oxide induction in human T cells and lung adenocarcinoma cells by selenite treatment. Proc Natl Acad Sci U S A 94:12904–12907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sakaguchi S, Iizuka Y, Furusawa S et al (2000) Roles of selenium in endotoxin-induced lipid peroxidation in the rats liver and in nitric oxide production in J774A.1 cells. Toxicol Lett 118:69–77

    Article  CAS  PubMed  Google Scholar 

  17. Arias M, Rojas M, Zabaleta J et al (1997) Inhibition of virulent Mycobacterium tuberculosis by Bcg(r) and Bcg(s) macrophages correlates with nitric oxide production. J Infect Dis 176:1552–1558

    Article  CAS  PubMed  Google Scholar 

  18. Chan J, Xing Y, Magliozzo RS, Bloom BR (1992) Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 175:1111–1122

    Article  CAS  PubMed  Google Scholar 

  19. Leone AM, Palmer RM, Knowles RG et al (1991) Constitutive and inducible nitric oxide synthases incorporate molecular oxygen into both nitric oxide and citrulline. J Biol Chem 266:23790–23795

    CAS  PubMed  Google Scholar 

  20. Rivero A (2006) Nitric oxide: an antiparasitic molecule of invertebrates. Trends Parasitol 22:219–225

    Article  CAS  PubMed  Google Scholar 

  21. Hillyer JF, Estevez-Lao TY (2010) Nitric oxide is an essential component of the hemocyte-mediated mosquito immune response against bacteria. Dev Comp Immunol 34:141–149

    Article  CAS  PubMed  Google Scholar 

  22. Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31:e73

    Article  PubMed Central  PubMed  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  24. Wang C, Wang H, Luo J et al (2009) Selenium deficiency impairs host innate immune response and induces susceptibility to Listeria monocytogenes infection. BMC Immunol 10:55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Yu D, Li JL, Zhang JL, Gao XJ, Xu S (2011) Effects of dietary selenium on selenoprotein W gene expression in the chicken immune organs. Biol Trace Elem Res 144:678–687

    Article  CAS  PubMed  Google Scholar 

  26. Kiremidjian-Schumacher L, Roy M, Wishe HI, Cohen MW, Stotzky G (1992) Regulation of cellular immune responses by selenium. Biol Trace Elem Res 33:23–35

    Article  CAS  PubMed  Google Scholar 

  27. Chaturvedi R, Asim M, Hoge S et al (2010) Polyamines impair immunity to helicobacter pylori by inhibiting L-arginine uptake required for nitric oxide production. Gastroenterology 139:1686–1698, 1698 e1681-1686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hu ZY, Cheng SM, Zhu QX (2006) Influence of induced nitric oxide synthase expression on apoptosis of thymocyte in burn rats. Zhonghua shao shang za zhi = Zhonghua shaoshang zazhi = Chinese J Burns 22:419–422

    CAS  Google Scholar 

  29. Liu LL, He JH, Xie HB et al (2014) Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens. Poult Sci 93:54–62

    Article  CAS  PubMed  Google Scholar 

  30. Szabo C (1996) Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain Res Bull 41:131–141

    Article  CAS  PubMed  Google Scholar 

  31. Rosselli M, Keller PJ, Dubey RK (1998) Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum Reprod Update 4:3–24

    Article  CAS  PubMed  Google Scholar 

  32. Assreuy J, Cunha FQ, Epperlein M et al (1994) Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major. Eur J Immunol 24:672–676

    Article  CAS  PubMed  Google Scholar 

  33. Matsuura M, Saito S, Hirai Y, Okamura H (2003) A pathway through interferon-gamma is the main pathway for induction of nitric oxide upon stimulation with bacterial lipopolysaccharide in mouse peritoneal cells. Eur J Biochem FEBS 270:4016–4025

    Article  CAS  Google Scholar 

  34. Taylor-Robinson AW (1997) Counter-regulation of T helper 1 cell proliferation by nitric oxide and interleukin-2. Biochem Biophys Res Commun 233:14–19

    Article  CAS  PubMed  Google Scholar 

  35. Koide N, Sugiyama T, Mu MM et al (2003) Gamma interferon-induced nitric oxide production in mouse CD5+ B1-like cell line and its association with apoptotic cell death. Microbiol Immunol 47:669–679

    Article  CAS  PubMed  Google Scholar 

  36. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  CAS  PubMed  Google Scholar 

  37. Karpuzoglu E, Ahmed SA (2006) Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: implications for immunity, autoimmune diseases, and apoptosis. Nitric Oxide Biol Chem Off J Nitric Oxide Soc 15:177–186

    Article  CAS  Google Scholar 

  38. Messmer UK, Lapetina EG, Brune B (1995) Nitric oxide-induced apoptosis in RAW 264.7 macrophages is antagonized by protein kinase C- and protein kinase A-activating compounds. Mol Pharmacol 47:757–765

    CAS  PubMed  Google Scholar 

  39. Prabhu KS, Zamamiri-Davis F, Stewart JB et al (2002) Selenium deficiency increases the expression of inducible nitric oxide synthase in RAW 264.7 macrophages: role of nuclear factor-kappaB in up-regulation. Biochem J 366:203–209

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Zhang ZW, Zhang JL, Gao YH et al (2013) Effect of oxygen free radicals and nitric oxide on apoptosis of immune organ induced by selenium deficiency in chickens. Biometals Int J Role Metal Ions Biol Biochem Med 26:355–365

    Article  CAS  Google Scholar 

  41. Boyne R, Arthur JR (1979) Alterations of neutrophil function in selenium-deficient cattle. J Comp Pathol 89:151–158

    Article  CAS  PubMed  Google Scholar 

  42. Wheeler DS, Wong HR (2007) Heat shock response and acute lung injury. Free Radic Biol Med 42:1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wheeler DS, Chase MA, Senft AP et al (2009) Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir Res 10:31

    Article  PubMed Central  PubMed  Google Scholar 

  44. Tsan MF, Gao B (2004) Cytokine function of heat shock proteins. Am J Physiol Cell Physiol 286:C739–C744

    Article  CAS  PubMed  Google Scholar 

  45. Bataki EL, Evans GS, Everard ML (2005) Respiratory syncytial virus and neutrophil activation. Clin Exp Immunol 140:470–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kaushal N, Bansal MP (2009) Diminished reproductive potential of male mice in response to selenium-induced oxidative stress: involvement of HSP70, HSP70-2, and MSJ-1. J Biochem Mol Toxicol 23:125–136

    Article  CAS  PubMed  Google Scholar 

  47. Kaushal N, Bansal MP (2009) Selenium variation induced oxidative stress regulates p53 dependent germ cell apoptosis: plausible involvement of HSP70-2. Eur J Nutr 48:221–227

    Article  CAS  PubMed  Google Scholar 

  48. Mahmoud KZ, Edens FW (2005) Influence of organic selenium on hsp70 response of heat-stressed and enteropathogenic Escherichia coli-challenged broiler chickens (Gallus gallus). Comparative biochemistry and physiology. Toxicol Pharmacol CBP 141:69–75

    Google Scholar 

  49. Feinstein DL, Galea E, Aquino DA et al (1996) Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFkappaB activation. J Biol Chem 271:17724–17732

    Article  CAS  PubMed  Google Scholar 

  50. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B (1997) Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17:5317–5327

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Malyshev I, Manukhina EB, Mikoyan VD, Kubrina LN, Vanin AF (1995) Nitric oxide is involved in heat-induced HSP70 accumulation. FEBS Lett 370:159–162

    Article  CAS  PubMed  Google Scholar 

  52. Zhang L, Liu Q, Yuan X et al (2013) Requirement of heat shock protein 70 for inducible nitric oxide synthase induction. Cell Signal 25:1310–1317

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31272626); the International (Regional) Cooperation and Exchange Projects of the National Natural Science Foundation of China (31320103920); the Study Abroad Foundation of Heilongjiang Province (LC201031); and the Doctoral Fund of the Ministry of Education of China (20122325110018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziwei Zhang or Shiwen Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yao, H., Yao, L. et al. Selenium Deficiency Influences the Gene Expressions of Heat Shock Proteins and Nitric Oxide Levels in Neutrophils of Broilers. Biol Trace Elem Res 161, 334–340 (2014). https://doi.org/10.1007/s12011-014-0150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0150-1

Keywords

Navigation