Skip to main content
Log in

Anatomical Region Differences and Age-Related Changes in Copper, Zinc, and Manganese Levels in the Human Brain

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Using inductively coupled plasma-mass spectrometry after samples microwave-assisted acid digestion, zinc (Zn), copper (Cu), and manganese (Mn) levels were measured in 14 different areas of the human brain of adult individuals (n = 42; 71 ± 12, range 50–101 years old) without a known history of neurodegenerative, neurological, or psychiatric disorder. The main goals of the work were to establish the “normal” (reference) values for those elements in the human brain and to evaluate the age-related changes, a prior and indispensable step in order to enlighten the role of trace element (TE) in human brain physiology and their involvement in aging and neurodegenerative processes. Considering the mean values for the 14 regions, Zn (mean ± sd; range 53 ± 5; 43–61 μg/g) was found at higher levels, followed by Cu (22 ± 5; 10–37 μg/g) and Mn (1.3 ± 0.3; 0.5–2.7 μg/g). The TE distribution across the brain tissue showed to be quite heterogeneous: the highest levels of Zn were found in the hippocampus (70 ± 10; 49–95 μg/g) and superior temporal gyrus (68 ± 10; 44–88 μg/g) and the lowest in the pons (33 ± 8; 19–51 μg/g); the highest levels of Cu and Mn were found in the putamen (36 ± 13; 21–76 μg/g and 2.5 ± 0.8; 0.7–4.5 μg/g, respectively) and the lowest in the medulla (11 ± 6; 2–30 μg/g and 0.8 ± 0.3; 0.2–1.8 μg/g, respectively). A tendency for an age-related increase in Zn and Mn levels was observed in most brain regions while Cu levels showed to be negatively correlated with age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. National Institute on Aging/US National Institutes of Health and WHO (2011) Global health and aging report. NIH Publication no 11–7737

  2. Castellani RJ, Rolston RK, Smith MA (2010) Alzheimer disease. Dis Mon 56(9):484–546

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345(1–2):91–104

    Article  PubMed  CAS  Google Scholar 

  4. Rivera-Mancia S, Perez-Neri I, Rios C, Tristan-Lopez L, Rivera-Espinosa L, Montes S (2010) The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 186(2):184–199

    Article  PubMed  CAS  Google Scholar 

  5. Schrag M, Mueller C, Oyoyo U, Smith MA, Kirsch WM (2011) Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol 94(3):296–306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M (2005) Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol 75(6):367–390

    Article  PubMed  CAS  Google Scholar 

  7. Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130(5S Suppl):1471s–1483s

    PubMed  CAS  Google Scholar 

  8. Scheiber IF, Mercer JF, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57

    Article  PubMed  CAS  Google Scholar 

  9. Takeda A (2003) Manganese action in brain function. Brain Res Brain Res Rev 41(1):79–87

    Article  PubMed  CAS  Google Scholar 

  10. Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12(2):222–228

    Article  PubMed  CAS  Google Scholar 

  11. Castellani RJ, Honda K, Zhu X, Cash AD, Nunomura A, Perry G, Smith MA (2004) Contribution of redox-active iron and copper to oxidative damage in Alzheimer disease. Ageing Res Rev 3(3):319–326

    Article  PubMed  CAS  Google Scholar 

  12. Bowman AB, Kwakye GF, Herrero Hernández E, Aschner M (2011) Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 25(4):191–203

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Paul MC, Parsons CH, Calford MB, von Nagy-Felsobuki EI (2004) Multi-elemental analysis of brain tissue from healthy Wistar rats using sector field inductively coupled plasma mass spectrometry. Spectrochim Acta B 59(9):1485–1490

    Article  Google Scholar 

  14. Saito T, Itoh T, Fujimura M, Saito K (1995) Age-dependent and region-specific differences in the distribution of trace elements in 7 brain regions of Long-Evans Cinnamon (LEC) rats with hereditary abnormal copper metabolism. Brain Res 695(2):240–244

    Article  PubMed  CAS  Google Scholar 

  15. Hozumi I, Hasegawa T, Honda A, Ozawa K, Hayashi Y, Hashimoto K, Yamada M, Koumura A, Sakurai T, Kimura A, Tanaka Y, Satoh M, Inuzuka T (2011) Patterns of levels of biological metals in CSF differ among neurodegenerative diseases. J Neurol Sci 303(1–2):95–99

    Article  PubMed  CAS  Google Scholar 

  16. Alimonti A, Bocca B, Pino A, Ruggieri F, Forte G, Sancesario G (2007) Elemental profile of cerebrospinal fluid in patients with Parkinson’s disease. J Trace Elem Med Biol 21(4):234–241

    Article  PubMed  CAS  Google Scholar 

  17. Forte G, Bocca B, Senofonte O, Petrucci F, Brusa L, Stanzione P, Zannino S, Violante N, Alimonti A, Sancesario G (2004) Trace and major elements in whole blood, serum, cerebrospinal fluid and urine of patients with Parkinson’s disease. J Neural Transm 111(8):1031–1040

    Article  PubMed  CAS  Google Scholar 

  18. Michalke B, Nischwitz V (2010) Review on metal speciation analysis in cerebrospinal fluid-current methods and results: a review. Anal Chim Acta 682(1–2):23–36

    Article  PubMed  CAS  Google Scholar 

  19. Gellein K, Skogholt JH, Aaseth J, Thoresen GB, Lierhagen S, Steinnes E, Syversen T, Flaten TP (2008) Trace elements in cerebrospinal fluid and blood from patients with a rare progressive central and peripheral demyelinating disease. J Neurol Sci 266(1–2):70–78

    Article  PubMed  CAS  Google Scholar 

  20. Deibel MA, Ehmann WD, Markesbery WR (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143(1–2):137–142

    Article  PubMed  CAS  Google Scholar 

  21. Hebbrecht G, Maenhaut W, Reuck JD (1999) Brain trace elements and aging. Nucl Instrum Meth B 150(1–4):208–213

    Article  CAS  Google Scholar 

  22. Rajan MT, Jagannatha Rao KS, Mamatha BM, Rao RV, Shanmugavelu P, Menon RB, Pavithran MV (1997) Quantification of trace elements in normal human brain by inductively coupled plasma atomic emission spectrometry. J Neurol Sci 146(2):153–166

    Article  PubMed  CAS  Google Scholar 

  23. Andrási E, Igaz S, Szoboszlai N, Farkas É, Ajtony Z (1999) Several methods to determine heavy metals in the human brain. Spectrochim Acta B 54(5):819–825

    Article  Google Scholar 

  24. Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A (2014) Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol 28(1):13–17

    Article  PubMed  CAS  Google Scholar 

  25. Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E (2012) MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. Neuroimage 59(3):2625–2635

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Gorell JM, Ordidge RJ, Brown GG, Deniau JC, Buderer NM, Helpern JA (1995) Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 45(6):1138–1143

    Article  PubMed  CAS  Google Scholar 

  27. Segovia G, Porras A, Del Arco A, Mora F (2001) Glutamatergic neurotransmission in aging: a critical perspective. Mech Ageing Dev 122(1):1–29

    Article  PubMed  CAS  Google Scholar 

  28. Paine SML, Lowe JS (2011) Approach to the post-mortem investigation of neurodegenerative diseases: from diagnosis to research. Diagn Histopathol 17(5):211–216

    Article  Google Scholar 

  29. Broadbent NJ, Squire LR, Clark RE (2004) Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci U S A 101(40):14515–14520

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Duflou H, Maenhaut W, De Reuck J (1989) Regional distribution of potassium, calcium, and six trace elements in normal human brain. Neurochem Res 14(11):1099–1112

    Article  PubMed  CAS  Google Scholar 

  31. Lanciego JL, Luquin N, Obeso JA (2012) Functional neuroanatomy of the Basal Ganglia. Cold Spring Harb Perspect Med 2(12)

  32. Andrási E, Farkas E, Gawlik D, Rosick U, Bratter P (2000) Brain iron and zinc contents of German patients with Alzheimer disease. J Alzheimers Dis 2(1):17–26

    PubMed  Google Scholar 

  33. Kornhuber J, Lange KW, Kruzik P, Rausch WD, Gabriel E, Jellinger K, Riederer P (1994) Iron, copper, zinc, magnesium, and calcium in postmortem brain tissue from schizophrenic patients. Biol Psychiatry 36(1):31–34

    Article  PubMed  CAS  Google Scholar 

  34. Andrási E, Farkas E, Scheibler H, Reffy A, Bezur L (1995) Al, Zn, Cu, Mn and Fe levels in brain in Alzheimer’s disease. Arch Gerontol Geriatr 21(1):89–97

    Article  PubMed  Google Scholar 

  35. Bonilla E, Salazar E, Villasmil JJ, Villalobos R, Gonzalez M, Davila JO (1984) Copper distribution in the normal human brain. Neurochem Res 9(11):1543–1548

    Article  PubMed  CAS  Google Scholar 

  36. Bonilla E, Salazar E, Villasmil JJ, Villalobos R (1982) The regional distribution of manganese in the normal human brain. Neurochem Res 7(2):221–227

    Article  PubMed  CAS  Google Scholar 

  37. Harrison WW, Netsky MG, Brown MD (1968) Trace elements in human brain: copper, zinc, iron, and magnesium. Clin Chim Acta 21(1):55–60

    Article  PubMed  CAS  Google Scholar 

  38. Krebs N, Langkammer C, Goessler W, Ropele S, Fazekas F, Yen K, Scheurer E (2014) Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry. J Trace Elem Med Biol 28(1):1–7

    Article  PubMed  CAS  Google Scholar 

  39. Hock A, Demmel U, Schicha H, Kasperek K, Feinendegen LE (1975) Trace element concentration in human brain. Activation analysis of cobalt, iron, rubidium, selenium, zinc, chromium, silver, cesium, antimony and scandium. Brain J Neurol 98(1):49–64

    Article  CAS  Google Scholar 

  40. Tohno Y, Tohno S, Azuma C, Minami T, Ke L, Ongkana N, Sinthubua A, Mahakkanukrauh P (2013) Mineral composition of and the relationships between them of human basal ganglia in very old age. Biol Trace Elem Res 151(1):18–29

    Article  PubMed  CAS  Google Scholar 

  41. Smart TG, Hosie AM, Miller PS (2004) Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. Neurosci Rev J Bring Neurobiol, Neurol Psychiatr 10(5):432–442

    CAS  Google Scholar 

  42. Watt NT, Griffiths HH, Hooper NM (2013) Neuronal zinc regulation and the prion protein. Prion 7(3):203–208

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Mocchegiani E, Malavolta M (2007) Zinc dyshomeostasis, ageing and neurodegeneration: implications of A2M and inflammatory gene polymorphisms. J Alzheimers Dis 12(1):101–109

    PubMed  CAS  Google Scholar 

  44. Craddock TJ, Tuszynski JA, Chopra D, Casey N, Goldstein LE, Hameroff SR, Tanzi RE (2012) The zinc dyshomeostasis hypothesis of Alzheimer’s disease. PLoS One 7(3):e33552

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Brouillet EP, Shinobu L, McGarvey U, Hochberg F, Beal MF (1993) Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol 120(1):89–94

    Article  PubMed  CAS  Google Scholar 

  46. Normandin L, Hazell AS (2002) Manganese neurotoxicity: an update of pathophysiologic mechanisms. Metab Brain Dis 17(4):375–387

    Article  PubMed  CAS  Google Scholar 

  47. Rossi L, Arciello M, Capo C, Rotilio G (2006) Copper imbalance and oxidative stress in neurodegeneration. Ital J Biochem 55(3–4):212–221

    PubMed  CAS  Google Scholar 

  48. Wang LM, Becker JS, Wu Q, Oliveira MF, Bozza FA, Schwager AL, Hoffman JM, Morton KA (2010) Bioimaging of copper alterations in the aging mouse brain by autoradiography, laser ablation inductively coupled plasma mass spectrometry and immunohistochemistry. Metall Integrat Biometal sci 2(5):348–353

    Article  CAS  Google Scholar 

  49. Klevay LM (2008) Alzheimer’s disease as copper deficiency. Med Hypotheses 70(4):802–807

    Article  PubMed  CAS  Google Scholar 

  50. Malavolta M, Giacconi R, Piacenza F, Santarelli L, Cipriano C, Costarelli L, Tesei S, Pierpaoli S, Basso A, Galeazzi R, Lattanzio F, Mocchegiani E (2010) Plasma copper/zinc ratio: an inflammatory/nutritional biomarker as predictor of all-cause mortality in elderly population. Biogerontology 11(3):309–319

    Article  PubMed  CAS  Google Scholar 

  51. Bartzokis G, Tishler TA, Lu PH, Villablanca P, Altshuler LL, Carter M, Huang D, Edwards N, Mintz J (2007) Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging 28(3):414–423

    Article  PubMed  CAS  Google Scholar 

  52. Xu X, Wang Q, Zhang M (2008) Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. Neuroimage 40(1):35–42

    Article  PubMed  CAS  Google Scholar 

  53. Correia H, Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A (2014) A post-mortem study of the anatomical region differences and age-related changes on Ca and Mg levels in the human brain. Microchem J 113:69–76

    Article  CAS  Google Scholar 

  54. Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52(6):1830–1836

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Universidade do Porto and Santander Totta for financial support through the project “TRAIN: Trace elements in human brain: age-related changes and anatomic region specific differences” (PP_IJUP 2011 342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostinho Almeida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, P., Santos, A., Pinto, N.R. et al. Anatomical Region Differences and Age-Related Changes in Copper, Zinc, and Manganese Levels in the Human Brain. Biol Trace Elem Res 161, 190–201 (2014). https://doi.org/10.1007/s12011-014-0093-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0093-6

Keywords

Navigation