Skip to main content
Log in

Differential Gene Expression and Bioinformatics Analysis of Copper Resistance Gene afe_1073 in Acidithiobacillus ferrooxidans

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper resistance of acidophilic bacteria is very significant in bioleaching of copper ore since high concentration of copper are harmful to the growth of organisms. Copper resistance gene afe_1073 was putatively considered to be involved in copper homeostasis in Acidithiobacillus ferrooxidans ATCC23270. In the present study, differential expression of afe_1073 in A. ferrooxidans strain DY26 and DC was assessed with quantitative reverse transcription polymerase chain reaction. The results showed the expression of afe_1073 in two strains increased with the increment of copper concentrations. The expression of DY26 was lower than that of DC at the same copper concentration although A. ferrooxidans strain DY26 possessed higher copper resistance than strain DC. In addition, bioinformatics analysis showed AFE_1073 was a typical transmembrane protein P1b1-ATPase, which could reduce the harm of Cu+ by pumping it out from the cell. There were two mutation sites in AFE_1073 between DY26 and DC and one may change the hydrophobicity of AFE_1073, which could enhance the ability of DY26 to pump out Cu+. Therefore, DY26 needed less gene expression of afe_1073 for resisting copper toxicity than that of DC at the same copper stress. Our study will be beneficial to understanding the copper resistance mechanism of A. ferrooxidans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pal S, Pradhan D, Das T, Sukla LB, Chaudhury GR (2010) Bioleaching of low-grade uranium ore using Acidithiobacillus ferrooxidans. Indian J Microbiol 50:70–75

    Article  PubMed  CAS  Google Scholar 

  2. Lee J, Pena MMO, Nose Y, Thiele DJ (2002) Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277:4380–4387

    Article  PubMed  CAS  Google Scholar 

  3. Rensing C, Grass G (2003) Escherichia coli mechanism of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213

    Article  PubMed  CAS  Google Scholar 

  4. Magnani D, Solioz M (2007) How bacteria handle copper. Microbiol Monogr 6:259–285

    Article  Google Scholar 

  5. Chisholm IA, Leduc LG, Ferroni GD (1998) Metal resistance and plasmid DNA in Thiobacillus ferrooxidans. Anton Leeuw Int J G 73:245–254

    Article  CAS  Google Scholar 

  6. Ahmad Z, Ghauri MA, Anwar MA, Lqbal M, Rehman M, Akhtar K, Khalid AM (2002) Transformation of plasmids of Acidithiobacillus ferrooxidans encoding ampicillin resistance to Escherichia coli strain DH5-alpha for detecting copper tolerance genes on such plasmids. Resour Environ Biotechnol 3:185–191

    CAS  Google Scholar 

  7. Paulino LC, Mello MP, Ottoboni LMM (2002) Differential gene expression in response to copper in Acidithiobacillus ferrooxidans analyzed by RNA arbitrarily primed polymerase chain reaction. Electrophoresis 23:520–527

    Article  PubMed  CAS  Google Scholar 

  8. Luo Y, Liu Y, Zhang C, Luo H, Guan H, Liao H, Qiu G, Liu X (2008) Insights into two high homogenous genes involved in copper homeostasis in Acidithiobacillus ferrooxidans. Curr Microbiol 57:274–280

    Article  PubMed  CAS  Google Scholar 

  9. Wu X, Hu Q, Hou D, Miao B, Liu X (2010) Differential gene expression in response to copper in Acidithiobacillus ferrooxidans strains possessing dissimilar copper-resistance. J Gen Appl Microbiol 56:491–498

    Article  PubMed  CAS  Google Scholar 

  10. Navarro CA, Orellana LH, Mauriaca C, Jerez CA (2009) Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper. Appl Environ Microbiol 75:6102–6109

    Article  PubMed  CAS  Google Scholar 

  11. Marisa LW, Juan FM (2005) Real-time PCR for mRNA quantization. Biotechniques 39:75–85

    Article  Google Scholar 

  12. Xueling W, Yuan P, Qi H, Hou D, Miao B, Qiu G (2011) Bioleaching of chalcopyrite by Acidithiobacillus ferrooxidans DY15, DY26 and DC and difference expressions of gene Afe0022. T Nonferr Metal Soc 21:932–938

    Google Scholar 

  13. Ki-Hyeong R, Julian D (2006) Transcription analysis of daptomycin biosynthetic genes in Streptomyces roseosporus. J Microbiol Biotechnol 16:1841–1848

    Google Scholar 

  14. Kenneth JL, Thomas DS (2001) Analysis of relative gene expression data using RT-quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  Google Scholar 

  15. Yang Y, Mandal AK, Bredeston LM, Gonzalez-Flecha FL, Arguello JM (2007) Activation of Archaeoglobus fulgidus Cu+-ATPase CopA by cysteine. Bba-Biomembrabes 1768:495–501

    Article  CAS  Google Scholar 

  16. Mandal AK, Cheung WD, Arguello JM (2002) Characterization of a thermophilic P-type Ag+/Cu+-ATPase from the extremophile Archaeoglobus fulgidus. J Biol Chem 277:7201–7208

    Article  PubMed  CAS  Google Scholar 

  17. Sivaram C, Rana A, Anke C, Terwisscha S, Werner K (2008) Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus. J Mol Biol 378:581–595

    Article  Google Scholar 

  18. Wernimont AK, Huffman DL, Lamb AL, O’Halloran TV, Rosenzweig AC (2000) Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat Struct Biol 7:766–771

    Article  PubMed  CAS  Google Scholar 

  19. Solioz M, Vulpe C (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241

    PubMed  CAS  Google Scholar 

  20. Arguello JM (2003) Identification of ion-selectivity determinants in heavy-metal transport P1b-type ATPases. J Membr Biol 195:93–108

    Article  PubMed  CAS  Google Scholar 

  21. Liu Y, Ji J, Runlan Y, Qiu G (2012) Expression, purification and molecular modeling of another HdrC from Acidithiobacillus ferrooxidans which binds only one [4Fe–4S] cluster. Curr Microbiol 65:416–423

    Article  PubMed  CAS  Google Scholar 

  22. Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W (1993) The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 5:344–350

    Article  PubMed  CAS  Google Scholar 

  23. Nakamura K, Go N (2005) Function and molecular evolution of multicopper blue proteins. Cell Mol Life Sci 62:2050–2066

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Basic Research Program of China (no. 2010CB630901), High Tech Research and Development Program (863 Program: 2012AA061502), and National Natural Science Foundation (no. 31070104 and no. 31100033) of China and the National Natural Science Foundation of P. R. China (no. 50904080 and no. 51274268).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueling Wu or Xueduan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Q., Wu, X., Jiang, Y. et al. Differential Gene Expression and Bioinformatics Analysis of Copper Resistance Gene afe_1073 in Acidithiobacillus ferrooxidans . Biol Trace Elem Res 152, 91–97 (2013). https://doi.org/10.1007/s12011-012-9589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9589-0

Keywords

Navigation