Skip to main content

Advertisement

Log in

Trace Metal Release from Orthodontic Appliances by In Vivo Studies: A Systematic Literature Review

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The paper discusses various approaches used to investigate biocompatibility by the analysis of metals release by the materials of which orthodontic appliances are made. Analysis of various biomarkers of exposure: saliva, serum, mucosa cells, or urine is used in in vivo tests. In this work, the techniques, results, and conclusions of original papers were compared by the implementation of the concept of a systematic review. The aim of the present work was to report the state-of-the-art in the research on methods used to assess exposure to trace metals from orthodontic appliances. The PubMed search identified 35 studies, among which nine met the selection criteria. The general conclusion in the studies was that metal ions were released mostly in the initial stage of the treatment. However, the majority of studies included 1–2 months long period and did not reflect long-term changes nor the impact of the complete treatment, the duration of which is several years, on the whole organism and the overall accumulation of metals from orthodontic appliances. In studies which evaluated nickel concentrations in blood and urine, long-term metal release was detected and significant differences were found. It leads to the conclusion that nickel ions are released from orthodontic appliances in measurable amounts to human organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turpin DL (2005) CONSORT and QUOROM guidelines for reporting randomized clinical trials and systematic reviews. Am J Orthod Dentofacial Orthop 125:681–686

    Article  Google Scholar 

  2. Richard A, Brand MD (2009) Standards of reporting: the CONSORT, QUOROM, and STROBE guidelines. Clin Orthop Relat Res 467:1393–1394

    Article  Google Scholar 

  3. Moher D, Cook DJ, Eastwood S et al (1999) Improving the quality of reports of meta-analyses of randomized controlled trials: the QUOROM statement. Lancet 354:1896–1900

    Article  CAS  PubMed  Google Scholar 

  4. Eliades T, Athanasiou AE (2002) In vivo aging of orthodontic alloys: implications for corrosion potential, nickel release, and biocompatibility. Angle Orthod 72:222–237

    PubMed  Google Scholar 

  5. Kerosuo H, Moe G, Kleven E (1995) In vitro release of nickel and chromium from different types of simulated orthodontic appliances. Angle Orthod 65:111–116

    CAS  PubMed  Google Scholar 

  6. Blanco-Dalmau L, Carrasquillo-Alberty H, Silva-Parra J (1984) A study of nickel allergy. J Prosthet Dent 52:116–119

    Article  CAS  PubMed  Google Scholar 

  7. Eliades T, Pratsinis H, Kletsas D, Eliades G, Makou M (2004) Characterization and cytotoxicity of ions released from stainless steel and nickel-titanium orthodontic alloys. Am J Orthod Dentofacial Orthop 125:24–29

    Article  PubMed  Google Scholar 

  8. Genelhu M, Marigo M, Alves-Oliveira LF, Malaquias L, Gomez RS (2005) Characterization of nickel-induced allergic contact stomatitis associated with fixed orthodontic appliances. Am J Orthod Dentofacial Orthop 128:378–381

    Article  PubMed  Google Scholar 

  9. Hayes RB (1997) The carcinogenicity of metals in humans. Cancer Causes Control 8:371–385

    Article  CAS  PubMed  Google Scholar 

  10. Faccioni F, Franceschetti P, Cerpelloni M, Fracasso ME (2003) In vivo study on metal release from fixed orthodontic appliances and DNA damage in oral mucosa cells. Am J Orthod Dentofacial Orthop 124:687–694

    Article  PubMed  Google Scholar 

  11. Petoumeno E, Kislyuk M, Hoederath H et al (2008) Corrosion susceptibility and nickel release of nickel titanium wires during clinical application. J Orofac Orthop 69(6):411–423

    Article  PubMed  Google Scholar 

  12. Eliades T, Trapalis C, Eliades G, Katsavrias E (2003) Salivary metal levels of orthodontic patients: a novel methodological and analytical approach. Eur J Orthod 25:103–106

    Article  PubMed  Google Scholar 

  13. Amini F, Borzabadi Farahani A, Jafari A, Rabbani M (2008) In vivo study of metal content of oral mucosa cells in patients with and without fixed orthodontic appliances. Orthod Craniofac Res 11(1):51–56

    Article  CAS  PubMed  Google Scholar 

  14. Matos de Souza R, Macedo de Menezes L (2008) Nickel, chromium and iron levels in the saliva of patients with simulated fixed orthodontic appliances. Angle Orthod 78(2):345–350

    Article  PubMed  Google Scholar 

  15. Ağaoğlu G, Arun T, Izgi B, Yarat A (2001) Nickel and chromium levels in the saliva and serum of patients with fixed orthodontic appliances. Angle Orthod 71(5):375–379

    PubMed  Google Scholar 

  16. Kerosuo H, Moe G, Hensten-Pettersen A (1997) Salivary nickel and chromium in subjects with different types of fixed orthodontic appliances. Am J Orthod Dentofacial Orthop 111(6):595–598

    Article  CAS  PubMed  Google Scholar 

  17. Kocadereli L, Ataç PA, Kale PS, Ozer D (2000) Salivary nickel and chromium in patients with fixed orthodontic appliances. Angle Orthod 70(6):431–434

    CAS  PubMed  Google Scholar 

  18. Menezes LM, Quintão CA, Bolognese AM (2007) Urinary excretion levels of nickel in orthodontic patients. Am J Orthod Dentofacial Orthop 131(5):635–638

    Article  PubMed  Google Scholar 

  19. Guidelines for Drinking-water Quality (2008) Third edition incorporating the first and second addenda. World Health Organization, Geneva

    Google Scholar 

  20. Fors R, Persson M (2006) Nickel in dental plaque and saliva in patients with and without orthodontic appliances. Eur J Orthod 28:292–297

    Article  PubMed  Google Scholar 

  21. Fairbrother A, Wenstel R, Sappington K, Wood W (2007) Framework for metals risk assessment. Ecotoxicol Environ Saf 68:145–227

    Article  CAS  PubMed  Google Scholar 

  22. Stadlbauer C, Reiter C, Patzak B, Stingeder G, Prohaska T (2007) History of individuals of the 18th/19th centuries stored in bones, teeth, and hair analyzed by LA-ICP-MS—a step in attempts to confirm the authenticity of Mozart's skull. Anal Bioanal Chem 388:593–602

    Article  CAS  PubMed  Google Scholar 

  23. Rodrigues JL, Batista BL, Nunes JA, Passos CJS, Barbosa F Jr (2008) Evaluation of the use of human hair for biomonitoring the deficiency of essential and exposure to toxic elements. Sci Total Environ 405:370–376

    Article  CAS  PubMed  Google Scholar 

  24. Moreda-Pineiro J, Alonso-Rodrigues E, Lopez-Mahia P et al (2007) Determination of major and trace elements in human scalp hair by pressurized-liquid extraction with acetic acid and inductively coupled plasma-optical emission spectrometry. Anal Bioanal Chem 388:441–449

    Article  CAS  PubMed  Google Scholar 

  25. Sfondrini MF, Cacciafesta V, Elena Maffia E, Massironi S, Scribante A, Alberti G, Raffaela Biesuz R, Klersy C (2008) Chromium release from new stainless steel, recycled and nickel-free orthodontic brackets. Angle Orthod 79:361–367

    Article  Google Scholar 

  26. Cortizo MC, Fernández M, De Mele L, Cortizo AM (2004) Metallic dental material biocompatibility in osteoblastlike cells correlation with metal ion release. Biol Trace Elem Res 100:151–168

    Article  CAS  PubMed  Google Scholar 

  27. Hol PJ, Vamnes JS, Gjerdet NR et al (2002) Dental amalgam affects urinary selenium excretion. Biol Trace Elem Res 85:137–147

    Article  CAS  PubMed  Google Scholar 

  28. Toro E, de Goeij JJM, Bacso J et al (1993) The significance of hair mineral analysis as a means for assessing internal body burdens of environmental pollutants: results from an IAEA co-ordinated research programme. J Radioanal Chem 167(2):413–421

    Article  Google Scholar 

Further Reading

  1. Baldwin PD, Pender N, Last KS (1999) Effects on tooth movement of force delivery from nickel-titanium archwires. Eur J Orthod 21(5):481–489

    Article  CAS  PubMed  Google Scholar 

  2. Cortizo MC, De Mele MF, Cortizo AM (2004) Metallic dental material biocompatibility in osteoblastlike cells: correlation with metal ion release. Biol Trace Elem Res 100(2):151–168

    Article  CAS  PubMed  Google Scholar 

  3. Elayyan F, Silikas N, Bearn D (2008) Ex vivo surface and mechanical properties of coated orthodontic archwires. Eur J Orthod 30(6):661–667

    Article  PubMed  Google Scholar 

  4. Eliades T, Zinelis S, Eliades G, Athanasiou AE (2002) Nickel content of as-received, retrieved, and recycled stainless steel brackets. Am J Orthod Dentofacial Orthop 122(2):217–220

    Article  PubMed  Google Scholar 

  5. Eliades T, Eliades G, Watts DC (2001) Intraoral aging of the inner headgear component: a potential biocompatibility concern? Am J Orthod Dentofacial Orthop 119(3):300–306

    Article  CAS  PubMed  Google Scholar 

  6. Eliades T, Eliades G, Athanasiou AE, Bradley TG (2000) Surface characterization of retrieved NiTi orthodontic archwires. Eur J Orthod 22(3):317–326

    Article  CAS  PubMed  Google Scholar 

  7. Evans TJ, Jones ML, Newcombe RG (1998) Clinical comparison and performance perspective of three aligning arch wires. Am J Orthod Dentofacial Orthop 114(1):32–39

    Article  CAS  PubMed  Google Scholar 

  8. Fricker JP (1998) A new self-curing resin-modified glass-ionomer cement for the direct bonding of orthodontic brackets in vivo. Am J Orthod Dentofacial Orthop 113(4):384–386

    CAS  PubMed  Google Scholar 

  9. Grimsdottir MR, Hensten-Pettersen A (1997) Surface analysis of nickel-titanium archwire used in vivo. Dent Mater 13(3):163–167

    Article  CAS  PubMed  Google Scholar 

  10. Grosgogeat B, Pernier C, Schiff N et al (2003) Biocompatibility and resistance to corrosion of orthodontic wires. Orthod Fr 74(1):115–121

    CAS  PubMed  Google Scholar 

  11. Ho KS, West VC (1991) Friction resistance between edgewise brackets and archwires. Aust Orthod J 12(2):95–99

    CAS  PubMed  Google Scholar 

  12. Iijima M, Brantley WA, Kawashima I (2004) Micro-X-ray diffraction observation of nickel-titanium orthodontic wires in simulated oral environment. Biomaterials 25(1):171–176

    Article  CAS  PubMed  Google Scholar 

  13. Kapila S, Haugen JW, Watanabe LG (1992) Load-deflection characteristics of nickel-titanium alloy wires after clinical recycling and dry heat sterilization. Am J Orthod Dentofacial Orthop 102(2):120–126

    Article  CAS  PubMed  Google Scholar 

  14. Kebsch M, Wilkinson M, Petocz P, Darendeliler MA (2007) The effect of fluoride administration on rat serum osteocalcin expression during orthodontic movement. Am J Orthod Dentofacial Orthop 131(4):515–524

    Article  PubMed  Google Scholar 

  15. Lee KJ, Park YC, Yu HS, Choi SH, Yoo YJ (2004) Effects of continuous and interrupted orthodontic force on interleukin-1beta and prostaglandin E2 production in gingival crevicular fluid. Am J Orthod Dentofacial Orthop 125(2):168–177

    Article  PubMed  Google Scholar 

  16. Linder-Aronson A, Forsberg CM, Rygh P, Lindskog S (1996) Tissue response to space closure in monkeys: a comparison of orthodontic magnets and superelastic coil springs. Eur J Orthod 18(6):581–588

    Article  CAS  PubMed  Google Scholar 

  17. Pandis N, Christensen L, Eliades T (2005) Long-term clinical failure rate of molar tubes bonded with a self-etching primer. Angle Orthod 75(6):1000–1002

    PubMed  Google Scholar 

  18. Ramalingam A, Kailasam V, Padmanabhan S, Chitharanjan A (2008) The effect of topical fluoride agents on the physical and mechanical properties of NiTi and copper NiTi archwires. An in vivo study. Aust Orthod J 24(1):26–31

    PubMed  Google Scholar 

  19. Rix D, Foley TF, Banting D, Mamandras A (2001) A comparison of fluoride release by resin-modified GIC and polyacid-modified composite resin. Am J Orthod Dentofacial Orthop 120(4):398–405

    Article  CAS  PubMed  Google Scholar 

  20. Rondelli G, Vicentini B (2000) Evaluation by electrochemical tests of the passive film stability of equiatomic Ni-Ti alloy also in presence of stress-induced martensite. J Biomed Mater Res 51(1):47–54

    Article  CAS  PubMed  Google Scholar 

  21. Rucker BK, Kusy RP (2002) Elastic properties of alternative versus single-stranded leveling archwires. Am J Orthod Dentofacial Orthop 122(5):528–541

    Article  PubMed  Google Scholar 

  22. Singh DP, Sehgal V, Pradhan KL, Chandna A, Gupta R (2008) Estimation of nickel and chromium in saliva of patients with fixed orthodontic appliances. World J Orthod 9(3):196–202

    PubMed  Google Scholar 

  23. Tselepis M, Brockhurst P, West VC (1994) The dynamic frictional resistance between orthodontic brackets and arch wires. Am J Orthod Dentofacial Orthop 106(2):131–138

    Article  CAS  PubMed  Google Scholar 

  24. Venza M, Visalli M, Ruggeri P et al (2002) Age-related salivary polyamine increase in adolescents wearing orthodontic Ni-Ti archwires. Amino Acids 22(2):119–130

    Article  CAS  PubMed  Google Scholar 

  25. Venza M, Visalli M, Cicciù D et al (2004) Polyamines in nickel-titanium archwire-induced gingivitis in adolescents. J Periodontol 75(6):877–885

    Article  CAS  PubMed  Google Scholar 

  26. Westphalen GH, Menezes LM, Prá D et al (2008) In vivo determination of genotoxicity induced by metals from orthodontic appliances using micronucleus and comet assays. Genet Mol Res 7(4):1259–1266

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Mikulewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikulewicz, M., Chojnacka, K. Trace Metal Release from Orthodontic Appliances by In Vivo Studies: A Systematic Literature Review. Biol Trace Elem Res 137, 127–138 (2010). https://doi.org/10.1007/s12011-009-8576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8576-6

Keywords

Navigation