Skip to main content
Log in

Homology Modeling and Probable Active Site Cavity Prediction of Uncharacterized Arsenate Reductase in Bacterial spp.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The arsC gene–encoded arsenate reductase is a vital catalytic enzyme for remediation of environmental arsenic (As). Microorganisms containing the arsC gene can convert pentavalent arsenate (As[V]) to trivalent arsenite (As[III]) to be either retained in the bacterial cell or released into the air. The molecular mechanism governing this process is unknown. Here we present an in silico model of the enzyme to describe their probable active site cavities using SCFBio servers. We retrieved the amino acid sequence of bacterial arsenate reductase enzymes in FASTA format from the NCBI database. Enzyme structure was predicted using the I-TASSER server and visualized using PyMOL tools. The ProSA and the PROCHECK servers were used to evaluate the overall significance of the predicted model. Accordingly, arsenate reductase from Streptococcus pyogenes, Oligotropha carboxidovorans OM5, Rhodopirellula baltica SH 1, and Serratia ureilytica had the highest quality scores with statistical significance. The plausible cavities of the active site were identified in our examined arsenate reductase enzymes which were abundant in glutamate and lysine residues with 6 to 16 amino acids. This in silico experiment may contribute greatly to the remediation of arsenic pollution through the utilization of microbial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rahman, S., Kim, K.-H., Saha, S. K., Swaraz, A., & Paul, D. K. (2014). Review of remediation techniques for arsenic (As) contamination: a novel approach utilizing bio-organisms. Journal of Environmental Management, 134, 175–185.

    Article  CAS  PubMed  Google Scholar 

  2. Liu, Z., Li, W., Qi, H., Song, G., Ding, D., Fu, Z., Liu, J., & Tang, J. (2012). Arsenic accumulation and distribution in the tissues of inbred lines in maize (Zea mays L.). Genetic Resources and Crop Evolution, 59(8), 1705–1711.

    Article  CAS  Google Scholar 

  3. Rahman, M. S., Biswas, P. K., Al Hasan, S. M., Rahman, M. M., Lee, S. H., Kim, K.-H., Rahman, S. M., & Islam, M. R. (2018). The occurrences of heavy metals in farmland soils and their propagation into paddy plants. Environmental Monitoring and Assessment, 190(4), 201.

    Article  PubMed  CAS  Google Scholar 

  4. Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58(1), 201–235.

    Article  CAS  PubMed  Google Scholar 

  5. Düring, R.-A., Hoß, T., & Gäth, S. (2003). Sorption and bioavailability of heavy metals in long-term differently tilled soils amended with organic wastes. Science of the Total Environment, 313(1–3), 227–234.

    Article  CAS  PubMed  Google Scholar 

  6. Tamaki, S., & Frankenberger, W. T. (1992). Environmental biochemistry of arsenic. In Reviews of environmental contamination and toxicology (pp. 79–110). Berlin: Springer.

    Chapter  Google Scholar 

  7. Cervantes, C., Ji, G., Ramírez, J. L., & Silver, S. (1994). Resistance to arsenic compounds in microorganisms. FEMS Microbiology Reviews, 15(4), 355–367.

    Article  CAS  PubMed  Google Scholar 

  8. Muller, D., Lievremont, D., Simeonova, D. D., Hubert, J.-C., & Lett, M.-C. (2003). Arsenite oxidase aox genes from a metal-resistant β-proteobacterium. Journal of Bacteriology, 185(1), 135–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huber, R., Sacher, M., Vollmann, A., Huber, H., & Rose, D. (2000). Respiration of arsenate and selenate by hyperthermophilic archaea. Systematic and Applied Microbiology, 23(3), 305–314.

    Article  CAS  PubMed  Google Scholar 

  10. Rosen, B. P. (2002). Biochemistry of arsenic detoxification. FEBS Letters, 529(1), 86–92.

    Article  CAS  PubMed  Google Scholar 

  11. Martin, P., DeMel, S., Shi, J., Gladysheva, T., Gatti, D. L., Rosen, B. P., & Edwards, B. F. (2001). Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Structure, 9(11), 1071–1081.

    Article  CAS  PubMed  Google Scholar 

  12. Ji, G., Garber, E. A., Armes, L. G., Chen, C.-M., Fuchs, J. A., & Silver, S. (1994). Arsenate reductase of Staphylococcus aureus plasmid pI258. Biochemistry, 33(23), 7294–7299.

    Article  CAS  PubMed  Google Scholar 

  13. Mukhopadhyay, R., Shi, J., & Rosen, B. P. (2000). Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. Journal of Biological Chemistry, 275(28), 21149–21157.

    Article  CAS  PubMed  Google Scholar 

  14. Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G., & Gibson, T. J. (1998). Multiple sequence alignment with Clustal X. Trends in Biochemical Sciences, 23(10), 403–405.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER suite: protein structure and function prediction. Nature Methods, 12(1), 7–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, J., & Zhang, Y. (2015). I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Research, 43(W1), W174–W181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: structural summaries of PDB entries. Protein Science, 27(1), 129–134.

    Article  CAS  PubMed  Google Scholar 

  20. Ramachandran, G. N. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7(1), 95–99.

    Article  CAS  PubMed  Google Scholar 

  21. Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486.

    Article  CAS  PubMed  Google Scholar 

  22. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(suppl_2), W407–W410.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). [20] VERIFY3D: assessment of protein models with three-dimensional profiles. In Methods in enzymology (Vol. 277, pp. 396–404). Cambridge: Academic Press.

    Google Scholar 

  24. Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook (pp. 571–607). Berlin: Springer.

    Chapter  Google Scholar 

  26. Singh, T., Biswas, D., & Jayaram, B. (2011). AADS-an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. Journal of Chemical Information and Modeling, 51(10), 2515–2527.

    Article  CAS  PubMed  Google Scholar 

  27. Martínez-Rosell, G., Giorgino, T., & De Fabritiis, G. (2017). PlayMolecule ProteinPrepare: a web application for protein preparation for molecular dynamics simulations. Journal of Chemical Information and Modeling, 57(7), 1511–1516.

    Article  PubMed  CAS  Google Scholar 

  28. Doerr, S., Harvey, M. J., Noé, F., & De Fabritiis, G. (2016). HTMD: high-throughput molecular dynamics for molecular discovery. Journal of Chemical Theory and Computation, 12(4), 1845–1852.

    Article  CAS  PubMed  Google Scholar 

  29. Govarthanan, M., Lee, S.-M., Kamala-Kannan, S., & Oh, B.-T. (2015). Characterization, real-time quantification and in silico modeling of arsenate reductase (arsC) genes in arsenic-resistant Herbaspirillum sp. GW103. Research in Microbiology, 166(3), 196–204.

    Article  CAS  PubMed  Google Scholar 

  30. Vyas, V. K., Ukawala, R. D., Ghate, M., & Chintha, C. (2012). Homology modeling a fast tool for drug discovery: current perspectives. Indian Journal of Pharmaceutical Sciences, 74(1), 1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DeMel, S., Shi, J., Martin, P., Rosen, B. P., & Edwards, B. F. P. (2004). Arginine 60 in the ArsC arsenate reductase of E. coli plasmid R773 determines the chemical nature of the bound As(III) product. Protein Science, 13(9), 2330–2340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roos, G., Buts, L., Van Belle, K., Brosens, E., Geerlings, P., Loris, R., Wyns, L., & Messens, J. (2006). Interplay between ion binding and catalysis in the thioredoxin-coupled arsenate reductase family. Journal of Molecular Biology, 360(4), 826–838.

    Article  CAS  PubMed  Google Scholar 

  33. Barman, U. D., Saha, S. K., Kader, M. A., Jamal, M. A. H. M., Sharma, S. P., Samad, A., & Rahman, M. S. (2020). Clinicopathological and prognostic significance of GPC3 in human breast cancer and its 3D structure prediction. Network Modeling Analysis in Health Informatics and Bioinformatics, 9, 1–18.

    Article  Google Scholar 

  34. Nain, Z., Sayed, S. B., Karim, M. M., Islam, M. A., & Adhikari, U. K. (2019). Energy-optimized pharmacophore coupled virtual screening in the discovery of quorum sensing inhibitors of LasR protein of Pseudomonas aeruginosa. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2019.1700168.

Download references

Funding

This research was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (Grant No: 2016R1E1A1A01940995).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Shahedur Rahman or Ki-Hyun Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict interest.

Research Involving Human Participants and/or Animals

No human and animal participants are involved.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.S., Hossain, M.S., Saha, S.K. et al. Homology Modeling and Probable Active Site Cavity Prediction of Uncharacterized Arsenate Reductase in Bacterial spp.. Appl Biochem Biotechnol 193, 1–18 (2021). https://doi.org/10.1007/s12010-020-03392-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03392-w

Keywords

Navigation