Skip to main content

Advertisement

Log in

Electricity Production and Characterization of High-Strength Industrial Wastewaters in Microbial Fuel Cell

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial fuel cells (MFCs) convert electrochemical energy into electrical energy immediately and have a big potential usage for the same time wastewater treatment and energy recovery via electro-active microorganisms. However, MFCs must be efficiently optimized due to its limitations such as high cost and low power production. Finding new materials to increase the cell performance and reduce cost for MFC anodes is mandatory. In the first step of this study, different inoculation sludges such as anaerobic gum industry wastewater, anaerobic brewery wastewater and anaerobic phosphate were tested, and MFC that was set up with anaerobic gum industry wastewater inoculation sludge exhibited the highest performance. In the second step of this study, various wastewaters such as chocolate industry, gum industry and slaughterhouse industry were investigated for anode bacteria sources. Several electrochemical techniques have been employed to elucidate how wastewaters affect the MFCs’ performance. Among all the mentioned wastewaters, the best performance was achieved by the MFCs fed with slaughterhouse wastewater; this device produced a maximum power density of 267 mW·m−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Abbasi, U., Jin, W., Pervez, A., Bhatti, Z. A., Tariq, M., Shaheen, S., Akhtar, I., & Mahmood, Q. (2016). Anaerobic microbial fuel cell treating combined industrial wastewater: correlation of electricity generation with pollutants. Bioresource Technology, 200, 1–7.

    Article  CAS  Google Scholar 

  2. Szollosi, A., Nguyen, Q. D., Kovács, A. G., Fogarasi, A. L., Kun, S., & Hegyesne-Vecseri, B. (2016). Production of low or non-alcoholic beer in microbial fuel cell. Food and Bioproducts Processing, 98, 196–200.

    Article  CAS  Google Scholar 

  3. Xiao, B., Han, Y., Liu, X., & Liu, J. (2014). Relationship of methane and electricity production in two-chamber microbial fuel cell using sewage sludge as substrate. International Journal of Hydrogen Energy, 39(29), 16419–16425.

    Article  CAS  Google Scholar 

  4. Ma, X., Feng, C., Zhou, W., & Yu, H. (2016). Municipal sludge-derived carbon anode with nitrogen-and oxygen-containing functional groups for high-performance microbial fuel cells. Journal of Power Sources, 307, 105–111.

    Article  CAS  Google Scholar 

  5. Ghadge, A. N., Jadhav, D. A., Pradhan, H., & Ghangrekar, M. M. (2015). Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell. Bioresource Technology, 182, 225–231.

    Article  CAS  Google Scholar 

  6. Yan, Z., Wang, M., Liu, J., Liu, R., & Zhao, J. (2014). Glycerol-stabilized NaBH4 reduction at room-temperature for the synthesis of a carbon-supported PtxFe alloy with superior oxygen reduction activity for a microbial fuel cell. Electrochimica Acta, 141, 331–339.

    Article  CAS  Google Scholar 

  7. Logan, B. E. (2008). Microbial fuel cells. Hoboken: Wiley.

    Google Scholar 

  8. Yoshizawa, T., Miyahara, M., Kouzuma, A., & Watanabe, K. (2014). Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation. Journal of Bioscience Bioengineering, 118, 533–539.

    Article  CAS  Google Scholar 

  9. Özkaya, B., Cetinkaya, A. Y., Cakmakci, M., Karadağ, D., & Sahinkaya, E. (2013). Electricity generation from young landfill leachate in a microbial fuel cell with a new electrode material. Bioprocess and Biosystems Engineering, 36(4), 399–405.

    Article  Google Scholar 

  10. Dong, Y., Qu, Y., He, W., Du, Y., Liu, J., Han, X., & Feng, Y. (2015). A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresource Technology, 195, 66–72.

    Article  CAS  Google Scholar 

  11. Kim, K. Y., Yang, W., Ye, Y., LaBarge, N., & Logan, B. E. (2016). Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater. Bioresource Technology, 208, 58–63.

    Article  CAS  Google Scholar 

  12. Pandey, P., Shinde, V. N., Deopurkar, R. L., Kale, S. P., Patil, S. A., & Pant, D. (2016). Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Applied Energy, 168, 706–723.

    Article  CAS  Google Scholar 

  13. Oon, Y. L., Ong, S. A., Ho, L. N., Wong, Y. S., Dahalan, F. A., Oon, Y. S., Lehl, H. K., & Thung, W. E. (2016). Synergistic effect of up-flow constructed wetland and microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresource Technology, 203, 190–197.

    Article  CAS  Google Scholar 

  14. Xie, B., Liu, B., Yi, Y., Yang, L., Liang, D., Zhu, Y., & Liu, H. (2016). Microbiological mechanism of the improved nitrogen and phosphorus removal by embedding microbial fuel cell in anaerobic–anoxic–oxic wastewater treatment process. Bioresource Technology, 207, 109–117.

    Article  CAS  Google Scholar 

  15. Cetinkaya, A. Y., Ozdemir, O. K., Koroglu, E. O., Hasimoglu, A., & Ozkaya, B. (2015). The development of catalytic performance by coating Pt–Ni on CMI 7000 membrane as a cathode of a microbial fuel cell. Bioresource Technology, 195, 188–193.

    Article  CAS  Google Scholar 

  16. Katuri, K. P., Enright, A. M., O’Flaherty, V., & Leech, D. (2012). Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater. Bioelectrochemistry, 87, 164–171.

    Article  CAS  Google Scholar 

  17. Logan, B. E., Aelterman, P., Hamelers, P., Rozendal, R., Schröeder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40(17), 5181–5192.

    Article  CAS  Google Scholar 

  18. Jiang, D., Li, B., Jia, W., et al. (2010). Effect of inoculum types on bacterial adhesion and power production in microbial fuel cells. Applied Biochemistry and Biotechnology, 160, 182. doi:10.1007/s12010-009-8541-z.

    Article  CAS  Google Scholar 

  19. Logan, B. E., & Regan, J. M. (2006). Feature article: microbial fuel cells-challenges and applications. Environmental Science & Technology, 40(17), 5172–5180.

    Article  CAS  Google Scholar 

  20. Liu, H., & Logan, B. E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science and Technology, 38, 4040–4046.

    Article  CAS  Google Scholar 

  21. Mohan, S. V., Saravanan, R., Raghavulu, S. V., Mohanakrishna, G., & Sarma, P. N. (2008). Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. Bioresource Technology, 99(3), 596–603.

    Article  Google Scholar 

  22. Lepistö, S. S., & Rintala, J. A. (1997). Start up and operation of laboratory scale thermophilic upflow anaerobic sludge blanket reactors treating vegetable processing wastewaters. Journal of Chemical Technology and Biotechnology, 68(3), 331–339.

    Article  Google Scholar 

  23. Taşkan, E., Özkaya, B., & Hasar, H. (2016). Comprehensive evaluation of two different inoculums in MFC with a new tin coated copper mesh anode electrode for producing electricity from a cottonseed oil industry effluent. Environmental Progress & Sustainable Energy, 35(1), 110–116.

    Article  Google Scholar 

  24. Mateo-Ramírez, F., Addi, H., Hernández-Fernández, F. J., Godínez, C., Pérez de los Ríos, A., Lotfi, E. M., El Mahi, M., & Lozano Blanco, L. J. (2016). Air breathing cathode-microbial fuel cell with separator based on ionic liquid applied to slaughterhouse wastewater treatment and bio-energy production. Journal of Chemical Technology and Biotechnology. doi:10.1002/jctb.5045.

    Google Scholar 

  25. Lanas, V., Ahn, Y., & Logan, B. E. (2014). Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode. Journal of Power Sources, 247, 228–234.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper includes Ph.D thesis data of Afşın Yusuf Çetinkaya. Authors gratefully acknowledge the Scientific and Technological Research Council of Turkey (TUBITAK) with the project number 114M119 for the financial support in the framework of New INDIGO (New Energy Materials and Smart Grids; No.DST/IMRCD/New Indigo/Bio-e-MAT/2014/(G)/(ii)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsin Y. Cetinkaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetinkaya, A.Y., Ozdemir, O.K., Demir, A. et al. Electricity Production and Characterization of High-Strength Industrial Wastewaters in Microbial Fuel Cell. Appl Biochem Biotechnol 182, 468–481 (2017). https://doi.org/10.1007/s12010-016-2338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2338-7

Keywords

Navigation