Skip to main content
Log in

Enhancement of In Situ Enzymatic Saccharification of Corn Stover by a Stepwise Sodium Hydroxide and Organic Acid Pretreatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A stepwise pretreatment method that combines sodium hydroxide and organic acid pretreatments was proposed and investigated to maximize the recovery of main constituents of lignocellulose. The sodium hydroxide pretreatment was firstly optimized by a designed orthogonal experiment with the optimum pretreatment conditions determined as 1 wt% NaOH at 70 °C for 1 h, and 60.42 % of lignin was successfully removed during this stage. In the second stage, 0.5 % acetic acid was selected to pretreat the first-stage solid residue at 80 °C for 40 min in order to decompose hemicelluloses to soluble oligomers or monomers. Then, the whole slurry was subjected to in situ enzymatic saccharification by cellullase with a supplementation of xylanase to further degrade the xylooligosaccharides generated during the acetic acid pretreatment. The maximum reducing sugar and glucose yields achieved were 20.74 and 12.03 g/L, respectively. Furthermore, rapid ethanol fermentation and a yield of 80.3 % also testified this pretreatment method, and the in situ saccharification did not bring any negative impact on ethanol fermentation and has a broad application prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  2. Doherty, W. O. S., Mousavioun, P., & Fellows, C. M. (2011). Value-adding to cellulosic ethanol: lignin polymers. Industrial Crops and Products, 33, 259–276.

    Article  CAS  Google Scholar 

  3. Somerville, C. (2006). Cellulose synthesis in higher plants. Annual Review of Cell and Developmental Biology, 22, 53–78.

    Article  CAS  Google Scholar 

  4. Parthasarathi, R., Romero, R. A., Redondo, A., & Gnanakaran, S. (2011). Theoretical study of the remarkably diverse linkages in lignin. The Journal of Physical Chemistry Letters, 2, 2660–2666.

    Article  CAS  Google Scholar 

  5. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315, 804–807.

    Article  CAS  Google Scholar 

  6. Huang, C. X., He, J., Min, D. Y., Lai, C. H., & Yong, Q. (2016). Understanding the nonproductive enzyme adsorption and physicochemical properties of residual lignins in Moso bamboo pretreated with sulfuric acid and kraft pulping. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-016-2183-8.

    Google Scholar 

  7. Kim, D. Y., Kim, Y. S., Kim, T. H., & Oh, K. K. (2016). Two-stage, acetic acid-aqueous ammonia, fractionation of empty fruit bunches for increased lignocellulosic biomass utilization. Bioresource Technology, 199, 121–127.

    Article  CAS  Google Scholar 

  8. Foston, M., Trajano, H. L., Samuel, R., Wyman, C. E., He, J., & Ragauskas, A. J. (2015). Recalcitrance and structural analysis by water-only flowthrough pretreatment of 13C enriched corn stover stem. Bioresource Technology, 197, 128–136.

    Article  CAS  Google Scholar 

  9. Yang, B., & Wyman, C. E. (2008). Characterization of the degree of polymerization of xylooligomers produced by flowthrough hydrolysis of pure xylan and corn stover with water. Bioresource Technology, 99, 5756–5762.

    Article  CAS  Google Scholar 

  10. Behera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable & Sustainable Energy Reviews, 36, 91–106.

    Article  CAS  Google Scholar 

  11. Wyman, C. E., Balan, V., Dale, B. E., Elander, R. T., Falls, M., Hames, B., Holtzapple, M. T., Ladisch, M. R., Lee, Y. Y., Mosier, N., Pallapolu, V. R., Shi, J., Thomas, S. R., & Warner, R. E. (2011). Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresource Technology, 102, 11052–11062.

    Article  CAS  Google Scholar 

  12. Park, Y. C., & Kim, J. S. (2012). Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy, 47, 31–35.

    Article  CAS  Google Scholar 

  13. Umagiliyage, A. L., Choudhary, R., Liang, Y. N., Haddock, J., & Watson, D. G. (2015). Laboratory scale optimization of alkali pretreatment for improving enzymatic hydrolysis of sweet sorghum bagasse. Industrial Crops and Products, 74, 977–986.

    Article  CAS  Google Scholar 

  14. Sahare, P., Singh, R., Laxman, R. S., & Rao, M. (2012). Effect of alkali pretreatment on the structural properties and enzymatic hydrolysis of corn cob. Applied Biochemistry and Biotechnology, 168, 1806–1819.

    Article  CAS  Google Scholar 

  15. Choi, W. L., Park, J. Y., Lee, J. P., Oh, Y. K., Park, Y. C., Kim, J. S., Park, J. M., Kim, C. H., & Lee, J. S. (2013). Optimization of NaOH-catalyzed steam pretreatment of empty fruit bunch. Biotechnology for Biofuels, 6, 170.

    Article  Google Scholar 

  16. Qin, L., Liu, Z. H., Li, B. Z., Dale, B. E., & Yuan, Y. J. (2012). Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresource Technology, 112, 319–326.

    Article  CAS  Google Scholar 

  17. Shen, J. C., & Wyman, C. E. (2011). A novel mechanism and kinetic model to explain enhanced xylose yields from dilute sulfuric acid compared to hydrothermal pretreatment of corn stover. Bioresource Technology, 102, 9111–9120.

    Article  CAS  Google Scholar 

  18. Qing, Q., Yang, B., & Wyman, C. E. (2010). Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technology, 101, 9624–9630.

    Article  CAS  Google Scholar 

  19. Gu, H. Q., Zhang, J., & Bao, J. (2014). Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues. Bioresource Technology, 157, 6–13.

    Article  CAS  Google Scholar 

  20. Kim, D. Y., Um, B. H., & Oh, K. K. (2015). Acetic acid-assisted hydrothermal fractionation of empty fruit bunches for high hemicellulosic sugar recovery with low byproducts. Applied Biochemistry and Biotechnology, 176, 1445–1458.

    Article  CAS  Google Scholar 

  21. Qing, Q., Huang, M. Z., He, Y. C., Wang, L. Q., & Zhang, Y. (2015). Dilute oxalic acid pretreatment for high total sugar recovery in pretreatment and subsequent enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 177, 1493–1507.

    Article  CAS  Google Scholar 

  22. Kumar, S., Dheeran, P., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2015). Kinetic studies of two-stage sulphuric acid hydrolysis of sugarcane bagasse. Renewable Energy, 83, 850–858.

    Article  CAS  Google Scholar 

  23. Min, D. Y., Xu, R. S., Hou, Z., Lv, J. Q., Huang, C. X., Jin, Y. C., & Yong, Q. (2015). Minimizing inhibitors during pretreatment while maximizing sugar production in enzymatic hydrolysis through a two-stage hydrothermal pretreatment. Cellulose, 22, 1253–1261.

    Article  CAS  Google Scholar 

  24. Liu, Q. Y., Li, W. Z., Ma, Q. Z., An, S. X., Li, M. H., Jameel, H., & Chang, H. M. (2016). Pretreatment of corn stover for sugar production using a two-stage dilute acid followed by wet-milling pretreatment process. Bioresource Technology, 211, 435–442.

    Article  CAS  Google Scholar 

  25. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Tmpleton, D. (2008). Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Report no. TP-510-42623. Golden, Colorado: National Renewable Energy Laboratory.

    Google Scholar 

  26. Selig, M., Weiss, N., & Ji, Y. (2008). Enzymatic saccharification of lignocellulosic biomass. Report no. TP-510-42629. Golden, Colorado: National Renewable Energy Laboratory.

    Google Scholar 

  27. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2011). Determination of structural carbohydrates and lignin in biomass. Report no. TP-510-42618. Golden, Colorado: National Renewable Energy Laboratory.

    Google Scholar 

  28. Zhao, X., Wang, L., Lu, X., & Zhang, S. (2014). Pretreatment of corn stover with diluted acetic acid for enhancement of acidogenic fermentation. Bioresource Technology, 158, 12–18.

    Article  CAS  Google Scholar 

  29. Amnuaycheewa, P., Hengaroonprasan, R., Rattanaporn, K., Kirdponpattara, S., Cheenkachorn, K., & Sriariyanun, M. (2016). Enhancing enzymatic hydrolysis and biogas production from rice straw by pretreatment with organic acids. Industrial Crops and Products, 87, 247–254.

    Article  CAS  Google Scholar 

  30. Pandey, K. K. (1999). A study of chemical structure of soft- and hardwood and wood polymers by ftir spectroscopy. Journal of Applied Polymer Science, 71, 1969–1975.

    Article  CAS  Google Scholar 

  31. Haykir, N. I., Bahcegul, E., Bicak, N., & Bakir, U. (2013). Pretreatment of cotton stalk with ionic liquids including 2-hydroxy ethyl ammonium formate to enhance biomass digestibility. Industrial Crops and Products, 41, 430–436.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the funds from the Jiangsu Natural Science Funds through the contract number of BK20140258, the Changzhou Sci &Tech Program through the grant number of CE20145053, and the Natural and Science Research Program of Jiangsu Universities through the contract number of 15KJB530002. We also acknowledge the Laboratory of Cellulosic Biofuel, Changzhou University, for providing the facilities and equipments used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang.

Electronic supplementary material

Table S1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qing, Q., Guo, Q., Zhou, L. et al. Enhancement of In Situ Enzymatic Saccharification of Corn Stover by a Stepwise Sodium Hydroxide and Organic Acid Pretreatment. Appl Biochem Biotechnol 181, 350–364 (2017). https://doi.org/10.1007/s12010-016-2216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2216-3

Keywords

Navigation