Skip to main content

Advertisement

Log in

Transient Tcf3 Gene Repression by TALE-Transcription Factor Targeting

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Transplantation of hematopoietic stem and progenitor cells (HSCs) i.e., self-renewing cells that retain multipotentiality, is now a widely performed therapy for many hematopoietic diseases. However, these cells are present in low number and are subject to replicative senescence after extraction; thus, the acquisition of sufficient numbers of cells for transplantation requires donors able to provide repetitive blood samples and/or methods of expanding cell numbers without disturbing cell multipotentiality. Previous studies have shown that HSCs maintain their multipotentiality and self-renewal activity if TCF3 transcription function is blocked under B cell differentiating conditions. Taking advantage of this finding to devise a new approach to HSC expansion in vitro, we constructed an episomal expression vector that specifically targets and transiently represses the TCF3 gene. This consisted of a vector encoding a transcription activator-like effector (TALE) fused to a Krüppel-associated box (KRAB) repressor. We showed that this TALE-KRAB vector repressed expression of an exogenous reporter gene in HEK293 and COS-7 cell lines and, more importantly, efficiently repressed endogenous TCF3 in a human B lymphoma cell line. These findings suggest that this vector can be used to maintain multipotentiality in HSC being subjected to a long-term expansion regimen prior to transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Galy, A., Travis, M., Cen, D., & Chen, B. (1995). Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity, 3, 459–473.

    Article  CAS  Google Scholar 

  2. Seita, J., & Weissman, I. L. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdisciplinary Reviews. Systems Biology and Medicine, 2, 640–653.

  3. Michallet, M., Philip, T., Philip, I., Godinot, H., Sebban, C., Salles, G., et al. (2000). Transplantation with selected autologous peripheral blood CD34+ Thy1+ hematopoietic stem cells (HSCs) in multiple myeloma: impact of HSC dose on engraftment, safety, and immune reconstitution. Experimental Hematology, 28, 858–870.

    Article  CAS  Google Scholar 

  4. Busch, K., Klapproth, K., Barile, M., Flossdorf, M., Holland-Letz, T., Schlenner, S. M., et al. (2015). Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature, 518, 542–546.

    Article  CAS  Google Scholar 

  5. Zakrzewski, J. L., van den Brink, M. R. M., & Hubbell, J. A. (2014). Overcoming immunological barriers in regenerative medicine. Nature Biotechnology, 32, 786–794.

    Article  CAS  Google Scholar 

  6. Moretta, L., Pietra, G., Montaldo, E., Vacca, P., Pende, D., Falco, M., et al. (2014). Human NK cells: from surface receptors to the therapy of leukemias and solid tumors. Frontiers in Immunology, 5, 87.

    Article  Google Scholar 

  7. Akashi, K., Traver, D., Miyamoto, T., & Weissman, I. L. (2000). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature, 404, 193–197.

    Article  CAS  Google Scholar 

  8. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C., & SJ, M. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.

    Article  CAS  Google Scholar 

  9. Wagner, W., Bork, S., Horn, P., Krunic, D., Walenda, T., Diehlmann, A., et al. (2009). Aging and replicative senescence have related effects on human stem and progenitor cells. PloS One, 4, e5846.

    Article  Google Scholar 

  10. June, C. H. (2007). Adoptive T cell therapy for cancer in the clinic. The Journal of Clinical Investigation, 117, 1466–1476.

    Article  CAS  Google Scholar 

  11. Cheng, M., Chen, Y., Xiao, W., Sun, R., & Tian, Z. (2013). NK cell-based immunotherapy for malignant diseases. Cellular & Molecular Immunology, 10, 230–252.

    Article  CAS  Google Scholar 

  12. Kelly, S. S., Sola, C. B. S., de Lima, M., & Shpall, E. (2009). Ex vivo expansion of cord blood. Bone Marrow Transplantation, 44, 673–681.

    Article  CAS  Google Scholar 

  13. Wagner, J. E., Rosenthal, J., Sweetman, R., Shu, X. O., Davies, S. M., Ramsay, N. K., et al. (1996). Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood, 88, 795–802.

    CAS  Google Scholar 

  14. Kurtzberg, J. (2009). Update on umbilical cord blood transplantation. Current Opinion in Pediatrics, 21, 22–29.

    Article  Google Scholar 

  15. Quong, M. W., Romanow, W. J., & Murre, C. (2002). E protein function in lymphocyte development. Annual Review of Immunology, 20, 301–322.

    Article  CAS  Google Scholar 

  16. Semerad, C. L., Mercer, E. M., Inlay, M. A., Weissman, I. L., & Murre, C. (2009). E2A proteins maintain the hematopoietic stem cell pool and promote the maturation of myelolymphoid and myeloerythroid progenitors. Proceedings of the National Academy of Sciences of the United States of America, 106, 1930–1935.

    Article  CAS  Google Scholar 

  17. Greenbaum, S., & Zhuang, Y. (2002). Identification of E2A target genes in B lymphocyte development by using a gene tagging-based chromatin immunoprecipitation system. Proceedings of the National Academy of Sciences of the United States of America, 99, 15030–15035.

    Article  CAS  Google Scholar 

  18. Belle, I., & Zhuang, Y. (2014). E proteins in lymphocyte development and lymphoid diseases. Current Topics in Developmental Biology, 110, 153–187.

    Article  CAS  Google Scholar 

  19. Ikawa, T., Masuda, K., Huijskens, M. J. A. J., Satoh, R., Kakugawa, K., Agata, Y., et al. (2015). Induced developmental arrest of early hematopoietic progenitors leads to the generation of leukocyte stem cells. Stem Cell Reports, 5, 716–727.

    Article  CAS  Google Scholar 

  20. Ikawa, T., Kawamoto, H., Wright, L. Y. T., & Murre, C. (2004). Long-term cultured E2A-deficient hematopoietic progenitor cells are pluripotent. Immunity, 20, 349–360.

    Article  CAS  Google Scholar 

  21. Okita, K., Yamakawa, T., Matsumura, Y., Sato, Y., Amano, N., Watanabe, A., et al. (2013). An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells, 31, 458–466.

    Article  CAS  Google Scholar 

  22. Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509–1512.

    Article  CAS  Google Scholar 

  23. Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., et al. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 39, e82.

    Article  CAS  Google Scholar 

  24. Uhde-Stone, C., Gor, N., Chin, T., Huang, J., & B, L. (2013). A do-it-yourself protocol for simple transcription activator-like effector assembly. Biological Procedures Online, 15, 3.

    Article  Google Scholar 

  25. Bernstein, D. L., Le Lay, J. E., Ruano, E. G., & Kaestner, K. H. (2015). TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. The Journal of Clinical Investigation, 125, 1998–2006.

    Article  Google Scholar 

  26. Ma, N., Liao, B., Zhang, H., Wang, L., Shan, Y., Xue, Y., et al. (2013). Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free β-thalassemia induced pluripotent stem cells. The Journal of Biological Chemistry, 288, 34671–34679.

    Article  CAS  Google Scholar 

  27. Spira, J., Povey, S., Wiener, F., Klein, G., & Andersson-Anvret, M. (1977). Chromosome banding, isoenzyme studies and determination of Epstein-Barr virus DNA content on human Burkitt lymphoma/mouse hybrids. International Journal of Cancer, 20, 849–853.

    Article  CAS  Google Scholar 

  28. Uhde-Stone, C., Cheung, E., & Lu, B. (2014). TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells. Biochemical and Biophysical Research Communications, 443, 1189–1194.

    Article  CAS  Google Scholar 

  29. Uhde-Stone, C., Huang, J., & B, L. (2012). A robust dual reporter system to visualize and quantify gene expression mediated by transcription activator-like effectors. Biological Procedures Online, 14, 8.

    Article  CAS  Google Scholar 

  30. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4326.

    Article  CAS  Google Scholar 

  31. Murai, K., Murakami, H., & Nagata, S. (1998). Myeloid-specific transcriptional activation by murine myeloid zinc-finger protein 2. Proceedings of the National Academy of Sciences of the United States of America, 95, 3461–3466.

    Article  CAS  Google Scholar 

  32. Vogt, M., Dulbecco, R., & Smith, B. (1966). Induction of cellular DNA synthesis by polyoma virus. 3. Induction in productively infected cells. Proceedings of the National Academy of Sciences of the United States of America, 55, 956–960.

    Article  CAS  Google Scholar 

  33. Chung, Y.-J., Park, B.-B., Kang, Y.-J., Kim, T.-M., Eaves, C. J., & Oh, I.-H. (2006). Unique effects of Stat3 on the early phase of hematopoietic stem cell regeneration. Blood, 108, 1208–1215.

    Article  CAS  Google Scholar 

  34. I-H, O., & Eaves, C. J. (2002). Overexpression of a dominant negative form of STAT3 selectively impairs hematopoietic stem cell activity. Oncogene, 21, 4778–4787.

    Article  Google Scholar 

  35. Kamitani, S., Togi, S., Ikeda, O., Nakasuji, M., Sakauchi, A., Sekine, Y., et al. (2011). Krüppel-associated box-associated protein 1 negatively regulates TNF-α-induced NF-κB transcriptional activity by influencing the interactions among STAT3, p300, and NF-κB/p65. Journal of Immunology, 187, 2476–2483.

    Article  CAS  Google Scholar 

  36. Schmitz, R., Young, R. M., Ceribelli, M., Jhavar, S., Xiao, W., Zhang, M., et al. (2012). Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature, 490, 116–120.

    Article  CAS  Google Scholar 

  37. Thiesen, H. J. (1996). From repression domains to designer zinc finger proteins: a novel strategy of intracellular immunization against HIV. Gene Expression, 5, 229–243.

    CAS  Google Scholar 

  38. Born, N., Thiesen, H.-J., & Lorenz, P. (2014). The B-subdomain of the Xenopus laevis XFIN KRAB-AB domain is responsible for its weaker transcriptional repressor activity compared to human ZNF10/Kox1. PloS One, 9, e87609.

    Article  Google Scholar 

  39. Bellefroid, E. J., Poncelet, D. A., Lecocq, P. J., Revelant, O., & Martial, J. A. (1991). The evolutionarily conserved Krüppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proceedings of the National Academy of Sciences of the United States of America, 88, 3608–3612.

    Article  CAS  Google Scholar 

  40. Matsuda, E., Agata, Y., Sugai, M., Katakai, T., Gonda, H., & Shimizu, A. (2001). Targeting of Krüppel-associated box-containing zinc finger proteins to centromeric heterochromatin. Implication for the gene silencing mechanisms. The Journal of Biological Chemistry, 276, 14222–14229.

    Article  CAS  Google Scholar 

  41. Agata, Y., Matsuda, E., & Shimizu, A. (1999). Two novel Kruppel-associated box-containing zinc-finger proteins, KRAZ1 and KRAZ2, repress transcription through functional interaction with the corepressor KAP-1 (TIF1 /KRIP-1). The Journal of Biological Chemistry, 274, 16412–16422.

    Article  CAS  Google Scholar 

  42. Hong, S., Hwang, D.-Y., Yoon, S., Isacson, O., Ramezani, A., Hawley, R. G., et al. (2007). Functional analysis of various promoters in lentiviral vectors at different stages of in vitro differentiation of mouse embryonic stem cells. Molecular Therapy, 15, 1630–1639.

    Article  CAS  Google Scholar 

  43. Ramezani, A., Hawley, T. S., & Hawley, R. G. (2000). Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Molecular Therapy, 2, 458–469.

    Article  CAS  Google Scholar 

  44. Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I. I., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801.

    Article  CAS  Google Scholar 

  45. Drozd, A. M., Walczak, M. P., Piaskowski, S., Stoczynska-Fidelus, E., Rieske, P., & Grzela, D. P. (2015). Generation of human iPSC from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system. Stem Cell Research & Therapy, 6, 122.

    Article  Google Scholar 

  46. Diecke, S., Jung, S. M., Lee, J., & Ju, J. H. (2014). Recent technological updates and clinical applications of induced pluripotent stem cells. The Korean Journal of Internal Medicine, 29, 547–557.

    Article  CAS  Google Scholar 

  47. Jia, F., Wilson, K. D., Sun, N., Gupta, D. M., Huang, M., Li, Z., et al. (2010). A nonviral minicircle vector for deriving human iPS cells. Nature Methods, 7, 197–199.

    Article  CAS  Google Scholar 

  48. Maeder, M. L., Linder, S. J., Cascio, V. M., Fu, Y., Ho, Q. H., & Joung, J. K. (2013). CRISPR RNA-guided activation of endogenous human genes. Nature Methods, 10, 977–979.

    Article  CAS  Google Scholar 

  49. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., et al. (2013). RNA-guided human genome engineering via Cas9. Science, 339, 823–826.

    Article  CAS  Google Scholar 

  50. Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., & Doudna, J. (2013). RNA-programmed genome editing in human cells. Elife, 2, e00471.

    Article  Google Scholar 

  51. Kearns, N. A., Genga, R. M. J., Enuameh, M. S., Garber, M., Wolfe, S. A., & Maehr, R. (2014). Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development, 141, 219–223.

    Article  CAS  Google Scholar 

  52. Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154, 442–451.

    Article  CAS  Google Scholar 

  53. Hu, J., Lei, Y., Wong, W.-K., Liu, S., Lee, K.-C., He, X., et al. (2014). Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Research, 42, 4375–4390.

    Article  CAS  Google Scholar 

  54. Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., et al. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183.

    Article  CAS  Google Scholar 

  55. Zhang, Z., Wu, E., Qian, Z., & Wu, W.-S. (2014). A multicolor panel of TALE-KRAB based transcriptional repressor vectors enabling knockdown of multiple gene targets. Scientific Reports, 4, 7338.

    Article  Google Scholar 

  56. Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., et al. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31, 822–826.

    Article  CAS  Google Scholar 

  57. Yamaguchi, M., Hirayama, F., Murahashi, H., Azuma, H., Sato, N., Miyazaki, H., et al. (2002). Ex vivo expansion of human UC blood primitive hematopoietic progenitors and transplantable stem cells using human primary BM stromal cells and human AB serum. Cytotherapy, 4, 109–118.

    Article  CAS  Google Scholar 

  58. Takubo, K., Nagamatsu, G., Kobayashi, C. I., Nakamura-Ishizu, A., Kobayashi, H., Ikeda, E., et al. (2013). Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell, 12, 49–61.

    Article  CAS  Google Scholar 

  59. Reya, T., Duncan, A. W., Ailles, L., Domen, J., Scherer, D. C., Willert, K., et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423, 409–414.

    Article  CAS  Google Scholar 

  60. Ring, A., Kim, Y.-M., & Kahn, M. (2014). Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Reviews, 10, 512–525.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Japan Society for the Promotion of Science (JSPS) KAKENHI, grant numbers 25860797, and Okayama Foundation for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junko Masuda.

Ethics declarations

Conflict of Interest

The authors declare that they have no financial or commercial conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masuda, J., Kawamoto, H., Strober, W. et al. Transient Tcf3 Gene Repression by TALE-Transcription Factor Targeting. Appl Biochem Biotechnol 180, 1559–1573 (2016). https://doi.org/10.1007/s12010-016-2187-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2187-4

Keywords

Navigation