Skip to main content

Advertisement

Log in

Enhanced Delivery of Plasmid Encoding Interleukin-12 Gene by Diethylene Triamine Penta-Acetic Acid (DTPA)-Conjugated PEI Nanoparticles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant therapeutic proteins have been considered as an efficient category of medications used for the treatment of various diseases. Despite their effectiveness, there are some reports on the systemic adverse effects of recombinant therapeutic proteins limiting their wide clinical applications. Among different cytokines used for cancer immunotherapy, interleukin-12 (IL-12) has shown great ability as a powerful antitumor and antiangiogenic agent. However, significant toxic reactions following the systemic administration of IL-12 have led researchers to seek for alternative approaches such as the delivery and local expression of the IL-12 gene inside the tumor tissues. In order to transfer the plasmid encoding IL-12 gene, the most extensively investigated polycationic polymer, polyethylenimine (PEI), was modified by diethylene triamine penta-acetic acid (DTPA) to modulate the hydrophobic-hydrophilic balance of the polymer as well as its toxicity. DTPA-conjugated PEI derivatives were able to form complexes in the size range around 100–180 nm with great condensation ability and protection of the plasmid against enzymatic degradation. The highest gene transfer ability was achieved by the DTPA-conjugated PEI at the conjugation degree of 0.1 % where the level of IL-12 production increased up to twofold compared with that of the unmodified PEI. Results of the present study demonstrated that modulation of the surface positive charge of PEI along with the improvement of the polymer hydrophobic balance could be considered as a successful strategy to develop safe and powerful nanocarriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kamimura, K., Suda, T., Zhang, G., & Liu, D. (2011). Advances in gene delivery systems. Pharmaceutical Medicine, 25, 293–306.

    Article  Google Scholar 

  2. Clarke, D. T., & McMillan, N. A. (2014). Gene delivery: cell-specific therapy on target. Nature Nanotechnology, 9, 568–569.

    Article  CAS  Google Scholar 

  3. Whitehead, K. A., Langer, R., & Anderson, D. G. (2009). Knocking down barriers: advances in siRNA delivery. Nature Reviews Drug Discovery, 8, 129–138.

    Article  CAS  Google Scholar 

  4. Kotterman, M. A., & Schaffer, D. V. (2014). Engineering adeno-associated viruses for clinical gene therapy. Nature Reviews Genetics, 15, 445–451.

    Article  CAS  Google Scholar 

  5. Gore, M. (2003). Gene therapy can cause leukaemia: no shock, mild horror but a probe. Gene Therapy, 10, 4–4.

    Article  CAS  Google Scholar 

  6. Yin, H., Kanasty, R. L., Eltoukhy, A. A., Vegas, A. J., Dorkin, J. R., & Anderson, D. G. (2014). Non-viral vectors for gene-based therapy. Nature Reviews Genetics, 15, 541–555.

    Article  CAS  Google Scholar 

  7. Gansbacher, B. (2003). Report of a second serious adverse event in a clinical trial of gene therapy for X‐linked severe combined immune deficiency (X‐SCID). The Journal of Gene Medicine, 5, 261–262.

    Google Scholar 

  8. Pack, D. W., Hoffman, A. S., Pun, S., & Stayton, P. S. (2005). Design and development of polymer for gene delivery. Nature Reviews Drug Discovery, 4, 581–593.

    Article  CAS  Google Scholar 

  9. Thomas, M., & Klibanov, A. (2003). Non-viral gene therapy: polycation-mediated DNA delivery. Applied Microbiology and Biotechnology, 62, 27–34.

    Article  CAS  Google Scholar 

  10. Lehrman, S. (1999). Virus treatment questioned after gene therapy death. Nature, 401, 517–518.

    Article  CAS  Google Scholar 

  11. Dehshahri, A., & Sadeghpour, H. (2015). Surface decorations of poly (amidoamine) dendrimer by various pendant moieties for improved delivery of nucleic acid materials. Colloids and Surfaces B: Biointerfaces, 132, 85–102.

    Article  CAS  Google Scholar 

  12. Wagner, E., & Lächelt, U. (2015). Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond). Chemical Reviews, 115, 11043–11078.

    Article  Google Scholar 

  13. Behr, J.-P., Boussif, O., Lezoualc’h, F., Zanta, M. A., Mergny, M. D., Scherman, D., & Demeneix, B. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceedings of the National Academy of Sciences, 92, 7297–7301.

    Article  Google Scholar 

  14. Wiethoff, C. M., GillI, M., Koe, G. S., Koe, J. G., & Middaugh, C. R. (2003). A fluorescence study of the structure and accessibility of plasmid DNA condensed with cationic gene delivery vehicles. Journal of Pharmaceutical Sciences, 92, 1272–1285.

    Article  CAS  Google Scholar 

  15. Cho, Y. W., Kim, J. D., & Park, K. (2003). Polycation gene delivery systems: escape from endosomes to cytosol. Journal of Pharmacy and Pharmacology, 55, 721–734.

    Article  CAS  Google Scholar 

  16. Dehshahri, A., Oskuee, R. K., Shier, W. T., Hatefi, A., & Ramezani, M. (2009). Gene transfer efficiency of high primary amine content, hydrophobic, alkyl-oligoamine derivatives of polyethylenimine. Biomaterials, 30, 4187–4194.

    Article  CAS  Google Scholar 

  17. Petersen, H., Fechner, P. M., Martin, A. L., Kunath, K., Stolnik, S., Roberts, C. J., Fischer, D., Davies, M. C., & Kissel, T. (2002). Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjugate Chemistry, 13, 845–854.

    Article  CAS  Google Scholar 

  18. Zintchenko, A., Philipp, A., Dehshahri, A., & Wagner, E. (2008). Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjugate Chemistry, 19, 1448–1455.

    Article  CAS  Google Scholar 

  19. Klibanov, A. M., & Thomas, M. (2002). Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. Proceedings of the National Academy of Sciences, 99, 14640–14645.

    Article  Google Scholar 

  20. Dehshahri, A., Kazemi Oskuee, R., Thomas Shier, W., & Ramezani, M. (2012). β-Galactosylated alkyl-oligoamine derivatives of polyethylenimine enhanced pDNA delivery into hepatic cells with reduced toxicity. Current Nanoscience, 8, 548–555.

    Article  CAS  Google Scholar 

  21. Dehshahri, A., Oskuee, R. K., & Ramezani, M. (2012). Plasmid DNA delivery into hepatocytes using a multifunctional nanocarrier based on sugar-conjugated polyethylenimine. Gene Therapy and Molecular Biology, 14, 62–71.

    Google Scholar 

  22. Oskuee, R. K., Dehshahri, A., Shier, W. T., & Ramezani, M. (2009). Alkylcarboxylate grafting to polyethylenimine: a simple approach to producing a DNA nanocarrier with low toxicity. The Journal of Gene Medicine, 11, 921–932.

    Article  CAS  Google Scholar 

  23. Oskuee, R. K., Philipp, A., Dehshahri, A., Wagner, E., & Ramezani, M. (2010). The impact of carboxyalkylation of branched polyethylenimine on effectiveness in small interfering RNA delivery. The Journal of Gene Medicine, 12, 729–738.

    Article  CAS  Google Scholar 

  24. Liang, W., Gong, H., Yin, D., Lu, S., & Fu, Q. (2011). High-molecular-weight polyethyleneimine conjuncted pluronic for gene transfer agents. Chemical and Pharmaceutical Bulletin, 59, 1094–1101.

    Article  CAS  Google Scholar 

  25. Doody, A. M., Korley, J. N., Dang, K. P., Zawaneh, P. N., & Putnam, D. (2006). Characterizing the structure/function parameter space of hydrocarbon-conjugated branched polyethylenimine for DNA delivery in vitro. Journal of Controlled Release, 116, 227–237.

    Article  CAS  Google Scholar 

  26. Choi, K. J., Zhang, S. N., Choi, I. K., Kim, J. S., & Yun, C.-O. (2012). Strengthening of sntitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-12 and GM-CSF. Gene Therapy, 19, 711–723.

    Article  CAS  Google Scholar 

  27. Colombo, M. P., & Trinchieri, G. (2002). Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Review, 13, 155–168.

    Article  CAS  Google Scholar 

  28. Chinnasamy, D., Yu, Z., Kerkar, S. P., Zhang, L., Morgan, R. A., Restifo, N. P., & Rosenberg, S. A. (2012). Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clinical Cancer Research, 18, 1672–1683.

    Article  CAS  Google Scholar 

  29. Xu, Q., Guo, L., Gu, X., Zhang, B., Hu, X., Zhang, J., Chen, J., Wang, Y., Chen, C., & Gao, B. (2012). Prevention of colorectal cancer liver metastasis by exploiting liver immunity via chitosan-TPP/nanoparticles formulated with IL-12. Biomaterials, 33, 3909–3918.

    Article  CAS  Google Scholar 

  30. Mahato, R. I., Lee, M., Han, S., Maheshwari, A., & Kim, S. W. (2001). Intratumoral delivery of p2CMVmIL-12 using water-soluble lipopolymers. Molecular Therapy, 4, 130–138.

    Article  CAS  Google Scholar 

  31. Janát-Amsbury, M. M., Yockman, J. W., Lee, M., Kern, S., Furgeson, D. Y., Bikram, M., & Kim, S. W. (2004). Combination of local, nonviral IL-12 gene therapy and systemic paclitaxel treatment in a metastatic breast cancer model. Molecular Therapy, 9, 829–836.

    Article  Google Scholar 

  32. Janát-Amsbury, M. M., Yockman, J. W., Lee, M., Kern, S., Furgeson, D. Y., Bikram, M., & Kim, S. W. (2005). Local, non-viral IL-12 gene therapy using a water soluble lipopolymer as carrier system combined with systemic paclitaxel for cancer treatment. Journal of Controlled Release, 101, 273–285.

    Article  Google Scholar 

  33. Snyder, S. L., & Sobocinski, P. Z. (1975). An improved 2, 4, 6-trinitrobenzenesulfonic acid method for the determination of amines. Analytical Biochemistry, 64, 284–288.

    Article  CAS  Google Scholar 

  34. Tang, M., & Szoka, F. (1997). The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Therapy, 4, 823–832.

    Article  CAS  Google Scholar 

  35. Ward, W. S., & Coffey, D. (1991). DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biology of Reproduction, 44, 569–574.

    Article  CAS  Google Scholar 

  36. Iacomino, G., Picariello, G., & D’Agostino, L. (2012). DNA and nuclear aggregates of polyamines. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Research, 1823, 1745–1755.

    CAS  Google Scholar 

  37. Hardy, J. G., Kostiainen, M. A., Smith, D. K., Gabrielson, N. P., & Pack, D. W. (2006). Dendrons with spermine surface groups as potential building blocks for nonviral vectors in gene therapy. Bioconjugate Chemistry, 17, 172–178.

    Article  CAS  Google Scholar 

  38. Chen, W., Turro, N. J., & Tomalia, D. A. (2000). Using ethidium bromide to probe the interactions between DNA and dendrimers. Langmuir, 16, 15–19.

    Article  Google Scholar 

  39. Ottaviani, M. F., Furini, F., Casini, A., Turro, N. J., Jockusch, S., Tomalia, D. A., & Messori, L. (2000). Formation of supramolecular structures between DNA and starburst dendrimers studied by EPR, CD, UV, and melting profiles. Macromolecules, 33, 7842–7851.

    Article  CAS  Google Scholar 

  40. Dehshahri, A., Sadeghpour, H., Oskuee, R. K., Fadaei, M., Sabahi, Z., Alhashemi, S. H., & Mohazabieh, E. (2014). Interleukin-12 plasmid DNA delivery using l-thyroxine-conjugated polyethylenimine nanocarriers. Journal of Nanoparticle Research, 16, 1–14.

    Article  CAS  Google Scholar 

  41. Forrest, M. L., Meister, G. E., Koerber, J. T., & Pack, D. W. (2004). Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharmaceutical Research, 21, 365–371.

    Article  CAS  Google Scholar 

  42. Gabrielson, N. P., & Pack, D. W. (2006). Acetylation of polyethylenimine enhances gene delivery via weakened polymer/DNA interactions. Biomacromolecules, 7, 2427–2435.

    Article  CAS  Google Scholar 

  43. Nimesh, S., Aggarwal, A., Kumar, P., Singh, Y., Gupta, K. C., & Chandra, R. (2007). Influence of acyl chain length on transfection mediated by acylated PEI nanoparticles. International Journal of Pharmaceutics, 337, 265–274.

    Article  CAS  Google Scholar 

  44. Ogris, M., Steinlein, P., Kursa, M., Mechtler, K., Kircheis, R., & Wagner, E. (1998). The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Therapy, 5, 1425–1433.

    Article  CAS  Google Scholar 

  45. Sabahi, Z., Samani, S. M., & Dehshahri, A. (2015). Conjugation of poly (amidoamine) dendrimers with various acrylates for improved delivery of plasmid encoding interleukin-12 gene. Journal of Biomaterials Applications, 29, 941–953.

    Article  CAS  Google Scholar 

  46. Dehshahri, A., Alhashemi, S. H., Jamshidzadeh, A., Sabahi, Z., Samani, S. M., Sadeghpour, H., Mohazabieh, E., & Fadaei, M. (2013). Comparison of the effectiveness of polyethylenimine, polyamidoamine and chitosan in transferring plasmid encoding interleukin-12 gene into hepatocytes. Macromolecular Research, 21, 1322–1330.

    Article  CAS  Google Scholar 

  47. Behr, J.-P. (1997). The proton sponge: a trick to enter cells the viruses did not exploit. CHIMIA International Journal for Chemistry, 51, 34–36.

    CAS  Google Scholar 

  48. Akinc, A., Thomas, M., Klibanov, A. M., & Langer, R. (2005). Exploring polyethylenimine‐mediated DNA transfection and the proton sponge hypothesis. The Journal of Gene Medicine, 7, 657–663.

    Article  CAS  Google Scholar 

  49. Tseng, W. C., Tang, C. H., & Fang, T. Y. (2004). The role of dextran conjugation in transfection mediated by dextran-grafted polyethylenimine. The Journal of Gene Medicine, 6, 895–905.

    Article  CAS  Google Scholar 

  50. Ihm, J. E., Krier, I., Lim, J. M., Shim, S., Han, D. K., & Hubbell, J. A. (2015). Improved biocompatibility of polyethylenimine (PEI) as a gene carrier by conjugating urocanic acid: in vitro and in vivo. Macromolecular Research, 23, 387–395.

    Article  CAS  Google Scholar 

  51. Salmasi, Z., Shier, W. T., Hashemi, M., Mahdipour, E., Parhiz, H., Abnous, K., & Ramezani, M. (2015). Heterocyclic amine-modified polyethylenimine as gene carriers for transfection of mammalian cells. European Journal of Pharmaceutics and Biopharmaceutics, 96, 76–88.

    Article  CAS  Google Scholar 

  52. Mahvi, D., Henry, M., Albertini, M., Weber, S., Meredith, K., Schalch, H., Rakhmilevich, A., Hank, J., & Sondel, P. (2007). Intratumoral injection of IL-12 plasmid DNA—results of a phase I/IB clinical trial. Cancer Gene Therapy, 14, 717–723.

    Article  CAS  Google Scholar 

  53. Anwer, K., Barnes, M., Fewell, J., Lewis, D., & Alvarez, R. (2010). Phase-I clinical trial of IL-12 plasmid/lipopolymer complexes for the treatment of recurrent ovarian cancer. Gene Therapy, 17, 360–369.

    Article  CAS  Google Scholar 

  54. Sangro, B., Mazzolini, G., Ruiz, J., Herraiz, M., Quiroga, J., Herrero, I., Benito, A., Larrache, J., Pueyo, J., & Subtil, J. C. (2004). Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. Journal of clinical oncology, 22, 1389–1397.

    Article  CAS  Google Scholar 

  55. Younes, A., Pro, B., Robertson, M. J., Flinn, I. W., Romaguera, J. E., Hagemeister, F., Dang, N. H., Fiumara, P., Loyer, E. M., & Cabanillas, F. F. (2004). Phase II clinical trial of interleukin-12 in patients with relapsed and refractory non-Hodgkin’s lymphoma and Hodgkin’s disease. Clinical Cancer Research, 10, 5432–5438.

    Article  CAS  Google Scholar 

  56. Cohen, J. (1995). IL-12 deaths: explanation and a puzzle. Science, 270, 908–908.

    Article  CAS  Google Scholar 

  57. Ozmen, L., Pericin, M., Hakimi, J., Chizzonite, R. A., Wysocka, M., Trinchieri, G. a., Gately, M., & Garotta, G. (1994). Interleukin 12, interferon gamma, and tumor necrosis factor alpha are the key cytokines of the generalized Shwartzman reaction. The Journal of Experimental Medicine, 180, 907–915.

    Article  CAS  Google Scholar 

  58. Hallaj-Nezhadi, S., Lotfipour, F., & Dass, C. (2011). Nanoparticle-mediated interleukin-12 cancer gene therapy. Journal of Pharmacy Pharmaceutical Sciences, 13, 472–485.

    Google Scholar 

  59. Oskuee, R., Dehshahri, A., Ramezani, M., & Shier, W. (2008). Modified polyethylenimine: self assemble nanoparticle forming polymer for pDNA delivery. Iranian Journal of Basic Medical Sciences, 11, 33–40.

    CAS  Google Scholar 

  60. Hashemi, M., Ayatollahi, S., Parhiz, H., Mokhtarzadeh, A., Javidi, S., & Ramezani, M. (2015). PEGylation of polypropylenimine dendrimer with alkylcarboxylate chain linkage to improve DNA delivery and cytotoxicity. Applied Biochemistry and Biotechnology, 177, 1–17.

    Article  CAS  Google Scholar 

  61. Li, G. F., Wang, J. C., Feng, X. M., Liu, Z. D., Jiang, C. Y., & Yang, J. D. (2015). Preparation and testing of quaternized chitosan nanoparticles as gene delivery vehicles. Applied Biochemistry and Biotechnology, 175, 3244–3257.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by Shiraz University of Medical Sciences, Shiraz, Iran. The financial support by the Iranian Nanotechnology Initiative Council (INIC) is gratefully acknowledged. The results presented in this paper were parts of the Pharm.D. thesis of Maryam Keykhaee. We would like to thank Dr Shiva Hemmati and Dr. Samira Hossaini Alhashemi for their helpful assistances.

Funding

This study was funded by Shiraz University of Medical Sciences, Shiraz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Dehshahri.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehshahri, A., Sadeghpour, H., Keykhaee, M. et al. Enhanced Delivery of Plasmid Encoding Interleukin-12 Gene by Diethylene Triamine Penta-Acetic Acid (DTPA)-Conjugated PEI Nanoparticles. Appl Biochem Biotechnol 179, 251–269 (2016). https://doi.org/10.1007/s12010-016-1991-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-1991-1

Keywords

Navigation