Skip to main content
Log in

Cloning, Expression, Characterization, and Mutagenesis of a Thermostable Exoinulinase From Kluyveromyces cicerisporus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Inulinase is an enzyme that belongs to glycoside hydrolase family 32. It converts inulin into high-fructose syrups and fructoligosaccharides, both of which are widely used in pharmaceutical and food industries. In this study, the kcINU1 gene (GenBank accession number AF178979) encoding an exoinulinase was cloned from Kluyveromyces cicerisporus CBS4857 and expressed in Pichia pastoris X-33, yielding a maximum of 45.2 ± 0.6 U mL−1 of inulinase activity of culture supernatant. The expressed inulinase was purified and characterized. The enzyme had an optimum temperature of 55 °C and an optimum pH of 4.5. It had a K m of 0.322 mM and a V max of 4317 μM min−1 mg−1 protein when inulin was used as a substrate. It retained nearly 90 % of the maximal activity after pre-incubation at 50 °C for 1 h or at pH ranging from 3.0 to 6.0 at 4 °C for 24 h, demonstrating that KcINU1 was stable at high temperature and low pH. Moreover, we constructed two KcINU1 mutants, Asp30Ala and Glu215Ala, by site-directed mutagenesis and confirmed via zymogram analysis that Asp-30 and Glu-215 of the enzyme were the catalytic active center. The present study has provided important information for understanding the catalytic mechanism of exoinulinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kango, N., & Jain, S. C. (2011). Production and properties of microbial inulinases: recent advances. Food Biotechnology, 25, 165–212.

    Article  CAS  Google Scholar 

  2. He, M., Wu, D., Wu, J., & Chen, J. (2014). Enhanced expression of endoinulinase rom Aspergillus niger by codon optimization in Pichia pastoris and its application in inulooligosaccharide production. Journal of Industrial Microbiology and Biotechnology, 41, 105–114.

    Article  CAS  Google Scholar 

  3. Mutanda, T., Mokoena, M. P., Olaniran, A. O., Wilhelmi, B. S., & Whiteley, C. G. (2014). Microbial enzymatic production and applications of short-chain fructooligosaccharides and inulooligosaccharides .recent advances and current perspectives. Journal of Industrial Microbiology and Biotechnology, 41, 893–906.

  4. Yuan, B., Hu, N., Sun, J., Wang, S. A., & Li, F. L. (2012). Purification and characterization of a novel extracellular inulinase from a new yeast species Candida kutaonensis sp. nov. KRF1T. Applied Microbiology and Biotechnology, 96, 1517–1526.

    Article  CAS  Google Scholar 

  5. Singh, P., & Gill, P. K. (2006). Production of inulinases: recent advances. Food Technology and Biotechnology, 44, 151–162.

    CAS  Google Scholar 

  6. Zhang, S. F., Yang, F., Wang, Q., Hua, Y. Y., & Zhao, Z. B. (2012). High-level secretory expression and characterization of the recombinant Kluyveromyces marxianus inulinase. Process Biochemistry, 47, 151–155.

    Article  CAS  Google Scholar 

  7. Zhou, J., Gao, Y., Zhang, R., Mo, M., Tang, X., Li, J., Xu, B., Ding, J., & Huang, Z. (2014). A novel low-temperature-active exo-inulinase identified based on molecular-activity strategy from Sphingobacterium sp. GN25 isolated from feces of Grus nigricollis. Process Biochemistry, 49, 1656–1663.

    Article  CAS  Google Scholar 

  8. Laowklom, N., Chantanaphan, R., & Pinphanichakarn, P. (2012). Production, purification and characterization of inulinase from a newly isolated Streptomyces sp. CP01. Natural Resources, 3, 137–144.

    Article  Google Scholar 

  9. Gao, J., Xu, Y. Y., Yang, H. M., Xu, H., Xue, F., Li, S., & Feng, X. H. (2014). Gene cloning, expression, and characterization of an exo-inulinase from Paenibacillus polymyxa ZJ-9. Applied Biochemistry and Biotechnology, 173, 1419–1430.

    Article  CAS  Google Scholar 

  10. Gong, F., Zhang, T., Chi, Z., Sheng, J., Li, J., & Wang, X. (2008). Purification and characterization of extracellular inulinase from a marine yeast Pichia guilliermondii and inulin hydrolysis by the purified inulinase. Biotechnology and Bioprocess Engineering, 13, 533–539.

    Article  CAS  Google Scholar 

  11. Kushi, R. T., Monti, R., & Contiero, J. (2000). Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. Journal of Industrial Microbiology and Biotechnology, 25, 63–69.

    Article  CAS  Google Scholar 

  12. Treichel, H., De Oliveira, D., Lerin, L., Astolfi, V., Mazutti, M. A., Luccio, M. D., & Oliveira, J. V. (2012). A review on the production and partial characterization of microbial inulinases. Global Journal of Biochemistry, 3, 1–13.

    Google Scholar 

  13. Singh, R. S., & Bhermi, H. K. (2008). Production of extracellular exoinulinase from Kluyveromyces marxianus YS-1 using root tubers of Asparagus officinalis. Bioresource Technology, 99, 7418–7423.

    Article  CAS  Google Scholar 

  14. Chi, Z. M., Chi, Z., Zhang, T., Liu, G. L., & Yue, L. X. (2009). Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology and Biotechnology, 82, 211–220.

    Article  CAS  Google Scholar 

  15. Sainz-Polo, M. A., Ramirez-Escudero, M., Lafraya, A., Gonzalez, B., Marin-Navarro, J., Polaina, J., & Sanz-Aparicio, J. (2013). Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity. The Journal of Biological Chemistry, 288, 9755–9766.

    Article  CAS  Google Scholar 

  16. Kuzuwa, S., Yokoi, K. J., Kondo, M., Kimoto, H., Yamakawa, A., Taketo, A., & Kodaira, K. (2012). Properties of the inulinase gene levH1 of Lactobacillus casei IAM 1045; cloning, mutational and biochemical characterization. Gene, 495, 154–162.

    Article  CAS  Google Scholar 

  17. Alvaro-Benito, M., Polo, A., Gonzalez, B., Fernandez-Lobato, M., & Sanz-Aparicio, J. (2010). Structural and kinetic analysis of Schwanniomyces occidentalis invertase reveals a new oligomerization pattern and the role of its supplementary domain in substrate binding. The Journal of Biological Chemistry, 285, 13930–13941.

    Article  CAS  Google Scholar 

  18. Cao, T. S., Wang, G. Y., Chi, Z., Wang, Z. P., & Chi, Z. M. (2013). Cloning, characterization and heterelogous expression of the INU1 gene from Cryptococcus aureus HYA. Gene, 516, 255–262.

    Article  CAS  Google Scholar 

  19. Le Roy, K., Lammens, W., Verhaest, M., De Coninck, B., Rabijns, A., Van Laere, A., & Van den Ende, W. (2007). Unraveling the difference between invertases and fructan exohydrolases: a single amino acid (Asp-239) substitution transforms Arabidopsis cell wall invertase into a fructan 1-exohydrolase. Plant Physiology, 145, 616–625.

    Article  Google Scholar 

  20. Vandamme, A. M., Michaux, C., Mayard, A., & Housen, I. (2013). Asparagine 42 of the conserved endo-inulinase INU2 motif WMNDPN from Aspergillus ficuum plays a role in activity specificity. FEBS Open Bio, 3, 467–472.

    Article  CAS  Google Scholar 

  21. Pouyez, J., Mayard, A., Vandamme, A. M., Roussel, G., Perpete, E. A., Wouters, J., Housen, I., & Michaux, C. (2012). First crystal structure of an endo-inulinase, INU2, from Aspergillus ficuum: discovery of an extra-pocket in the catalytic domain responsible for its endo-activity. Biochimie, 94, 2423–2430.

    Article  CAS  Google Scholar 

  22. Alvaro-Benito, M., de Abreu, M., Fernandez-Arrojo, L., Plou, F. J., Jimenez-Barbero, J., Ballesteros, A., Polaina, J., & Fernandez-Lobato, M. (2007). Characterization of a beta-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. Journal of Biotechnology, 132, 75–81.

    Article  CAS  Google Scholar 

  23. Baumgartner, S., & Praznik, W. (1995). Purification of exo- and endoinulinase from crude inulinase extract for the analysis of fructans. International Journal of Biological Macromolecules, 17, 247–250.

    Article  CAS  Google Scholar 

  24. Wen, T., Liu, F., Huo, K., & Li, Y. (2003). Cloning and analysis of the inulinase gene from Kluyveromyces cicerisporus. World Journal of Microbiology & Biotechnology, 19, 423–426.

    Article  CAS  Google Scholar 

  25. Lammens, W., Le Roy, K., Schroeven, L., Van Laere, A., Rabijns, A., & Van den Ende, W. (2009). Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications. Journal of Experimental Botany, 60, 727–740.

    Article  CAS  Google Scholar 

  26. Lu, W. L., Li, A. X., & Guo, Q. L. (2014). Production of novel alkalitolerant and thermostable inulinase from marine actinomycete Nocardiopsis sp. DN-K15 and inulin hydrolysis by the enzyme. Annales de Microbiologie, 64, 441–449.

    Article  CAS  Google Scholar 

  27. Zhou, H. X., Xin, F. H., Chi, Z., Liu, G. L., & Chi, Z. M. (2014). Inulinase production by the yeast Kluyveromyces marxianus with the disrupted MIG1 gene and the over-expressed inulinase gene. Process Biochemistry, 49, 1867–1874.

    Article  CAS  Google Scholar 

  28. Chen, X. M., Xu, X. M., Jin, Z. Y., & Chen, H. Q. (2013). Expression of an exoinulinase gene from Aspergillus ficuum in Escherichia coli and its characterization. Carbohydrate Polymers, 92, 1984–1990.

    Article  CAS  Google Scholar 

  29. Xiao, R., Tanida, M., & Takao, S. (1989). Purification and characteristics of two exoinulinases from Chrysosporium pannorum. Journal of Fermentation and Bioengineering, 67, 331–334.

    Article  CAS  Google Scholar 

  30. Sheng, J., Chi, Z., Gong, F., & Li, J. (2007). Purification and characterization of extracellular inulinase from a marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the purified inulinase. Applied Biochemistry and Biotechnology, 144, 111–121.

    Article  Google Scholar 

  31. Sheng, J., Chi, Z., Li, J., Gao, L., & Gong, F. (2007). Inulinase production by the marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the crude inulinase. Process Biochemistry, 42, 805–811.

    Article  CAS  Google Scholar 

  32. Moriyama, S., Akimoto, H., Suetsugu, N., Kawasaki, S., Nakamura, T., & Ohta, K. (2002). Purification and properties of an extracellular exoinulinase from Penicillium sp. strain TN-88 and sequence analysis of the encoding gene. Bioscience, Biotechnology, and Biochemistry, 66, 1887–1896.

    Article  CAS  Google Scholar 

  33. Kwon, H. J., Jeon, S. J., You, D. J., Kim, K. H., Jeong, Y. K., Kim, Y. H., Kim, Y. M., & Kim, B. W. (2003). Cloning and characterization of an exoinulinase from Bacillus polymyxa. Biotechnology Letter, 25, 155–159.

    Article  CAS  Google Scholar 

  34. Anthony, R., & Maley, F. (1996). Studies on identifying the catalytic role of Glu-204 in the active site of yeast invertase. Journal of Biological Chemistry, 271, 13953–13958.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Hong Lv for the plasmid Y179U/pUKDS-INU presented to us and Dr. Qun Zhao for the MALDI-TOF analysis of molecular weight of the protein. This study was supported by grants from the Chinese High-tech Research and Development program (2011AA10A205, 2014AA093511) and the Open Funding of National Key Laboratory of Biochemical Engineering (2012KF-06). Heng Yin was supported by Youth Innovation Promotion Association of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Guang Du or Heng Yin.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

Lineweaver-Burk plot showing the activity of KcINU1 against different concentrations of inulin. V represents the initial reaction rates, which were calculated from the amount of reducing sugars produced per minute per milligram protein, and [S] represents the concentration of inulin. The initial reaction rates were determined at pH 4.5 and 55 °C for 10 min with the concentrations of inulin ranging from 4.2 to 83.3 mM. The kinetic parameters K m and V max were calculated according to the Lineweaver-Burk plot. (GIF 31 kb)

High resolution image (TIFF 440 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, JY., Cao, HL., Tan, HD. et al. Cloning, Expression, Characterization, and Mutagenesis of a Thermostable Exoinulinase From Kluyveromyces cicerisporus . Appl Biochem Biotechnol 178, 144–158 (2016). https://doi.org/10.1007/s12010-015-1864-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1864-z

Keywords

Navigation