Skip to main content
Log in

Antioxidant Capacity of Poly(Ethylene Glycol) (PEG) as Protection Mechanism Against Hydrogen Peroxide Inactivation of Peroxidases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The ability of poly(ethylene glycol) (PEG) to protect enzymatic peroxidase activity was determined for horseradish peroxidase (HRP), versatile peroxidase (VP), commercial Coprinus peroxidase (BP), and chloroperoxidase (CPO). The operational stability measured as the total turnover number was determined for the four peroxidases. The presence of PEG significantly increased the operational stability of VP and HRP up to 123 and 195 %, respectively, and dramatically increased the total turnover number of BP up to 597 %. Chloroperoxidase was not protected by PEG, which may be due to the different oxidation mechanism, in which the oxidation is mediated by hypochlorous ion instead of free radicals as in the other peroxidases. The presence of PEG does not protect the enzyme when incubated only in the presence of H2O2 without reducing substrate. The catalytic constants (k cat) are insensitive to the presence of PEG, suggesting that the protection mechanism is not due to a competition between the PEG and the substrate as electron donors. On the other hand, PEG showed to have a significant antioxidant capacity. Thus, we conclude that the protection mechanism for peroxidases of PEG is based in its antioxidant capacity with which it is able scavenge or drain radicals that are harmful to the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Linossier, G. (1898). Contribution à l’étude des ferments oxidants. Sür la peroxidase du pups. Comtes Rendues de la Societé de Biologie, Paris, 50, 373–375.

    Google Scholar 

  2. Valderrama, B., Ayala, M., & Vazquez-Duhalt, R. (2012). Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chemistry & Biology, 9, 555–565.

    Article  Google Scholar 

  3. Ayala, M., Pickard, M. A., & Vazquez-Duhalt, R. (2008). Fungal enzymes for environmental purposes: a molecular biology challenge. Journal of Molecular Microbiology and Biotechnology, 15, 172–180.

    Article  CAS  Google Scholar 

  4. Miyazaki, C., & Takahashiemail, H. (2001). Engineering of the H2O2-binding pocket region of a recombinant manganese peroxidase to be resistant to H2O2. FEBS Letters, 509, 111–114.

    Article  CAS  Google Scholar 

  5. Miyazaki-Imamura, C., Oohira, K., Kitagawa, R., Nakano, H., Yamane, T., & Takahashi, H. (2003). Improvement of H2O2 stability of manganese peroxidase by combinatorial mutagenesis and high-throughput screening using in vitro expression with protein disulide isomerase. Protein Engineering, 16, 423–428.

    Article  CAS  Google Scholar 

  6. Valderrama, B., Garcia-Arellano, H., Giansanti, S., Baratto, M. C., Pogni, R., & Vazquez-Duhalt, R. (2006). Oxidative stabilization of iso-1-cytochrome c by redox-inspired protein engineering. FASEB Journal, 20, 1233–1235.

  7. Cherry, J. R., Lamsa, M. H., Schneider, P., Vind, J., Svendsen, A., Jones, A., & Pedersen, A. H. (1999). Directed evolution of a fungal peroxidase. Nature Biotechnology, 17, 379–384.

    Article  CAS  Google Scholar 

  8. Vidal-Limón, A., Águila, S., Ayala, M., Batista, C. V., & Vazquez-Duhalt, R. (2013). Peroxidase activity stabilization of cytochrome P450BM3 by rational analysis of intramolecular electron transfer. Journal of Inorganic Biochemistry, 122, 18–26.

    Article  Google Scholar 

  9. Nakamoto, S., & Machida, M. (1992). Phenol removal from aqueous solutions by peroxidase-catalyzed reactions using additives. Water Research, 26, 49–54.

    Article  CAS  Google Scholar 

  10. Klibanov, A. M., Tu, T., & Scott, K. P. (1983). Peroxidase catalyzed removal of phenols from coal-conversion waste waters. Science, 221, 259–261.

    Article  CAS  Google Scholar 

  11. Mao, L., Luo, S., Huang, Q., & Lu, J. (2013). Horseradish peroxidase inactivation: heme destruction and influence of polyethylene glycol. Scientific Reports, 3, 3126.

    Google Scholar 

  12. Wu, Y., Taylor, K. E., Biswas, N., & Bewtra, J. K. (1997). Comparison of additives in the removal of phenolic compounds by peroxidase-catalyzed polymerization. Water Research, 31, 2699–2704.

    Article  CAS  Google Scholar 

  13. Quintanilla-Guerrero, F., Duarte-Vázquez, M. A., García-Almendarez, B. E., Tinoco, R., Vazquez-Duhalt, R., & Regalado, C. (2008). Polyethylene glycol improves phenol removal by immobilized turnip peroxidase. Bioresource Technology, 99, 8605–8611.

    Article  CAS  Google Scholar 

  14. Wu, Y., Taylor, K. E., Biswas, N., & Bewtra, J. K. (1998). A model for the protective effect of additives on the activity of horseradish peroxidase in the removal of phenol. Enzyme and Microbial Technology, 22, 315–322.

    Article  CAS  Google Scholar 

  15. Manoj, K. M., & Hager, L. P. (2008). Chloroperoxidase, a Janus enzyme. Biochemistry, 47, 2997–3003.

    Article  CAS  Google Scholar 

  16. Spreti, N., Germani, R., Incani, A., & Savelli, G. (2004). Stabilization of chloroperoxidase by polyethylene glycols in aqueous media: kinetic studies and synthetic applications. Biotechnology Progress, 20, 96–101.

    Article  CAS  Google Scholar 

  17. Zhi, L., Jiang, Y., Wang, Y., Hu, M., Li, S., & Ma, Y. (2007). Effects of additives on the thermostability of chloroperoxidase. Biotechnology Progress, 23, 729–733.

    Article  CAS  Google Scholar 

  18. Narayanan, R., Zhu, G., & Wang, P. (2007). Stabilization of interface-binding chloroperoxidase for interfacial biotransformation. Journal of Biotechnology, 128, 86–92.

    Article  CAS  Google Scholar 

  19. Wang, Y., Vazquez-Duhalt, R., & Pickard, M. A. (2003). Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese. Canadian Journal of Microbiology, 49, 675–682.

    Article  CAS  Google Scholar 

  20. Pickard, M. A., Kadima, T. A., & Carmichael, R. D. (1991). Chloroperoxidase, a peroxidase with potential. Journal of Industrial Microbiology, 7, 235–242.

    Article  CAS  Google Scholar 

  21. Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the Autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469–474.

    Article  CAS  Google Scholar 

  22. Kim, S. J., Joo, J. C., Kim, H. S., Kwon, I., Song, B. K., Yoo, Y. J., & Kim, Y. H. (2014). Development of the radical-stable Coprinus cinerus peroxidase (CiP) by blocking the radical attack. Journal of Biotechnology, 189, 78–85.

    Article  CAS  Google Scholar 

  23. Manoj, K. M. (2006). Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction components play multiple roles in the overall process. Biochimica Biophysica Acta, 1764, 1325–1339.

    Article  CAS  Google Scholar 

  24. White, C. W., Jackson, J. H., Abuchowski, A., Kazo, G. M., Mimmack, R. F., Berger, E. M., Freeman, B. A., McCord, J. M., & Repine, J. E. (1989). Polyethylene glycol-attached antioxidant enzymes decrease pulmonary oxygen toxicity in rats. Journal of Applied Physiology, 66, 584–590.

    CAS  Google Scholar 

  25. Luo, J., Borgens, R., & Shi, R. (2002). Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury. Journal of Neurochemistry, 83, 471–480.

    Article  CAS  Google Scholar 

  26. Ayala, M., Roman, R., & Vazquez-Duhalt, R. (2007). A catalytic approach to estimate the redox potential of heme-peroxidases. Biochemical Biophysical Research Communications, 357, 804–808.

    Article  CAS  Google Scholar 

  27. Hondal, K., Maeda, Y., Sasakawa, S., Ohno, H., & Tsuchida, E. (1981). The components contained in polyethylene glycol of comercial grade (PEG-6000) as cell fusogen. Biochemical Biophysical Research Communications, 101, 165–171.

    Article  Google Scholar 

  28. Marks, J. D., Pan, C.-Y., Brushell, T., Cromie, W., & Lee, R. C. (2001). Amphiphilic, tri-block copolymers provide potent membrane-targeted neuroprotection. FASEB Journal, 15, 1107–1109.

    CAS  Google Scholar 

  29. Almkvist, G., & Persson, I. (2008). Fenton-induced degradation of polyethylene glycol and oak holocellulose. A model experiment in comparaison to changes observed in conserved waterlogged wood. Holzforschung, 62, 704–708.

    CAS  Google Scholar 

  30. Chen, S.-X., & Schopfer, P. (1999). Hydroxyl-radical production in physiological reactions. A novel function of peroxidase. European Journal of Biochemistry, 260, 726–735.

    Article  CAS  Google Scholar 

  31. Montellano, P. R. (2010). Catalytic mechanisms of heme peroxidases. In E. Torres & M. Ayala (Eds.), Biocatalysis based on heme peroxidases: Peroxidases as potential industrial biocatalysts (pp. 79–107). Berlin: Springer-Verlag. Ch. 5.

    Chapter  Google Scholar 

  32. Busi, E., Howes, B. D., Pogni, R., Basosi, R., Tinoco, R., & Vazquez-Duhalt, R. (2000). Modified cytochrome c/H2O2 system: spectroscopic EPR investigation of the biocatalytic behaviour. Journal of Molecular Catalysis B: Enzymatic, 9, 39–48.

    Article  CAS  Google Scholar 

  33. Wu, J., Zhao, C., Lin, W., Hu, R., Wang, Q., Chen, H., Li, L., Chen, J., & Zheng, J. (2014). Binding characteristics between polyethylene glycol (PEG) and proteins in aqueous solution. Journal of Material Chemistry B, 2, 2983–2992.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Katrin Quester for her expert technical assistance. K. Juarez-Moreno was awarded with a DGAPA-UNAM postdoctoral fellowship, and this work was funded by the National Council of Science and Technology of Mexico (CONACyT  -165633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Vazquez-Duhalt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juarez-Moreno, K., Ayala, M. & Vazquez-Duhalt, R. Antioxidant Capacity of Poly(Ethylene Glycol) (PEG) as Protection Mechanism Against Hydrogen Peroxide Inactivation of Peroxidases. Appl Biochem Biotechnol 177, 1364–1373 (2015). https://doi.org/10.1007/s12010-015-1820-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1820-y

Keywords

Navigation