Skip to main content
Log in

Rhizopus oryzae Lipase Immobilized on Hierarchical Mesoporous Silica Supports for Transesterification of Rice Bran Oil

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The tunable textural properties of self-oriented mesoporous silica were investigated for their suitability as enzyme immobilization matrices to support transesterification of rice bran oil. Different morphologies of mesoporous silica (rod-like, rice-like, and spherical) were synthesized and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption–desorption isotherms. The surface area, pore size, and ordered arrangement of the pores were found to influence the immobilization and activity of the enzyme in the mesopores. The immobilization in rod-like silica was highest with an immobilization efficiency of 63 % and exhibited minimal activity loss after immobilization. Functionalization of the mesoporous surface with ethyl groups further enhanced the enzyme immobilization. The free enzyme lost most of its activity at 50 °C while the immobilized enzyme showed activity even up to 60 °C. Transesterified product yield of nearly 82 % was obtained for 24 h of reaction with enzyme immobilized on ethyl-functionalized SBA-15 at an oil:methanol ratio of 1:3. Fourier transform infrared spectroscopy (FT–IR) and Gas chromatography–mass spectrometry (GC-MS) were used to characterize the transesterified product obtained. The reusability of the immobilized enzyme was studied for 3 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ye, P., Jiang, J., & Xu, Z. K. (2007). Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly(acrylonitrile-co-maleic acid) membrane surface. Colloids and Surfaces B: Biointerfaces, 60, 62–67.

    Article  CAS  Google Scholar 

  2. Dizge, N., Aydiner, C., Imer, D. Y., Bayramoglu, M., Tanriseven, A., & Keskinler, B. (2009). Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer. Bioresource Technology, 100, 1983–1991.

    Article  CAS  Google Scholar 

  3. Prlainovic, N. Z., Knezevic-Jugovic, Z. D., Mijin, D. Z., & Bezbradica, D. I. (2011). Immobilization of lipase from Candida rugosa on Sepabeads((R)): the effect of lipase oxidation by periodates. Bioprocess and Biosystems Engineering, 34, 803–810.

    Article  CAS  Google Scholar 

  4. Bordes, F., Barbe, S., Escalier, P., Mourey, L., Andre, I., Marty, A., & Tranier, S. (2010). Exploring the conformational states and rearrangements of Yarrowia lipolytica Lipase. Biophysical Journal, 99, 2225–2234.

    Article  CAS  Google Scholar 

  5. Piamtongkam, R., Duquesne, S., Bordes, F., Barbe, S., Andre, I., Marty, A., & Chulalaksananukul, W. (2011). Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Biotechnology and Bioengineering, 108, 1749–1756.

    Article  CAS  Google Scholar 

  6. Gao, S., Wang, Y., Diao, X., Luo, G., & Dai, Y. (2010). Effect of pore diameter and cross-linking method on the immobilization efficiency of Candida rugosa lipase in SBA-15. Bioresource Technology, 101, 3830–3837.

    Article  CAS  Google Scholar 

  7. Yin, P., Chen, W., Liu, W., Chen, H., Qu, R., Liu, X., Tang, Q., & Xu, Q. (2013). Efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica for biodiesel synthesis by esterification of oleic acid with ethanol. Bioresource Technology, 140, 146–151.

    Article  CAS  Google Scholar 

  8. Grasset, L., Cordier, D., & Ville, A. (1977). Woven silk as a carrier for the immobilization of enzymes. Biotechnology and Bioengineering, 19, 611–618.

    Article  CAS  Google Scholar 

  9. Mateo, C., Grazu, V., Pessela, B. C., Montes, T., Palomo, J. M., Torres, R., Lopez-Gallego, F., Fernandez-Lafuente, R., & Guisan, J. M. (2007). Advances in the design of new epoxy supports for enzyme immobilization-stabilization. Biochemical Society Transactions, 35, 1593–1601.

    Article  CAS  Google Scholar 

  10. Bayramoglu, G., Altintas, B., & Arica, M. Y. (2011). Reversible immobilization of uricase on conductive polyaniline brushes grafted on polyacrylonitrile film. Bioprocess and Biosystems Engineering, 34, 127–134.

    Article  CAS  Google Scholar 

  11. Ducker, R. E., Montague, M. T., & Leggett, G. J. (2008). A comparative investigation of methods for protein immobilization on self-assembled monolayers using glutaraldehyde, carbodiimide, and anhydride reagents. Biointerphases, 3, 59–65.

    Article  CAS  Google Scholar 

  12. Daglioglu, C., & Zihnioglu, F. (2012). Covalent immobilization of trypsin on glutaraldehyde-activated silica for protein fragmentation. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 40, 378–384.

    Article  CAS  Google Scholar 

  13. Ferrarotti, S. A., Bolivar, J. M., Mateo, C., Wilson, L., Guisan, J. M., & Fernandez-Lafuente, R. (2006). Immobilization and stabilization of a cyclodextrin glycosyltransferase by covalent attachment on highly activated glyoxyl-agarose supports. Biotechnology Progress, 22, 1140–1145.

    Article  CAS  Google Scholar 

  14. Vinoba, M., Bhagiyalakshmi, M., Jeong, S. K., Yoon, Y. I., & Nam, S. C. (2012). Immobilization of carbonic anhydrase on spherical SBA-15 for hydration and sequestration of CO2Colloids and Surfaces B: Biointerfaces, 90, 91–96.

    Article  CAS  Google Scholar 

  15. Li, S., Wu, Z., Lu, M., Wang, Z., & Li, Z. (2013). Improvement of the enzyme performance of trypsin via adsorption in mesoporous silica SBA-15: hydrolysis of BAPNA. Molecules, 18, 1138–1149.

    Article  CAS  Google Scholar 

  16. Wan, M. M., Lin, W. G., Gao, L., Gu, H. C., & Zhu, J. H. (2012). Promoting immobilization and catalytic activity of horseradish peroxidase on mesoporous silica through template micelles. Journal of Colloid and Interface Science, 377, 497–503.

    Article  CAS  Google Scholar 

  17. Magner, E. (2013). Immobilisation of enzymes on mesoporous silicate materials. Chemical Society Reviews, 42, 6213–6222.

    Article  CAS  Google Scholar 

  18. Gandhi, S., Sethraman, S., & Krishnan, U. M. (2010). Influence of polyhydric solvents on the catalytic and adsorption properties of self-oriented mesoporous SBA-15 silica. Journal of Porous Materials, 18, 329–336.

    Article  Google Scholar 

  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  20. Hiol, A., Jonzo, M. D., Rugani, N., Druet, D., Sarda, L., & Comeau, L. C. (2000). Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme and Microbial Technology, 26, 421–430.

    Article  CAS  Google Scholar 

  21. Bayramoglu, G., Karagoz, B., Altintas, B., Arica, M. Y., & Bicak, N. (2011). Poly(styrene-divinylbenzene) beads surface functionalized with di-block polymer grafting and multi-modal ligand attachment: performance of reversibly immobilized lipase in ester synthesis. Bioprocess and Biosystems Engineering, 34, 735–746.

    Article  CAS  Google Scholar 

  22. Balcao, V. M., & Malcata, F. X. (1998). On the performance of a hollow-fiber bioreactor for acidolysis catalyzed by immobilized lipase. Biotechnology and Bioengineering, 60, 114–123.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the characterization facilities established from the PG Teaching fund of the Nanomission council, Department of Science and Technology, and infrastructure support from SASTRA University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Maheswari Krishnan.

Additional information

Prashanth Ramachandran and Guru Krupa Narayanan have equal contribution to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, P., Narayanan, G.K., Gandhi, S. et al. Rhizopus oryzae Lipase Immobilized on Hierarchical Mesoporous Silica Supports for Transesterification of Rice Bran Oil. Appl Biochem Biotechnol 175, 2332–2346 (2015). https://doi.org/10.1007/s12010-014-1432-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1432-y

Keywords

Navigation