Skip to main content
Log in

The Aggregation of Aβ42 Induced by Nano Copper and the Antagonistic Action of Polysaccharides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The toxic effect of Aβ42 induced by copper nanoparticle (Cu NPs) was studied by atomic force microscopy (AFM), circular dichroism (CD) spectroscopy, and Thioflavin T (ThT) fluorescence technique. Five hundred nanometers of copper nanoparticle capped with polyvinylpyrrolidone (PVP) was used to evaluate the aggregation and fibrils of Aβ42. The morphologies of Aβ42 incubated in the presence of Cu NPs changed gradually. The aggregation and fibrils were observed in AFM images. However, in the presence of polysaccharides, the Cu NPs-induced fibrillation of Aβ42 was inhibited. Interestingly, the formed Cu NPs–polysaccharides complexes can even remodel the preformed Aβ42 fibrils into the low neurotoxic amorphous aggregates, which were maybe ascribed to the higher affinity of polysaccharides for Aβ42 than Cu NPs. Besides, it was found that the binding constant of Cu NPs to Aβ42 is smaller than that of polysaccharides. The relationship among polysaccharides, copper nanoparticle, and Aβ42 morphologies and its neurotoxicity were discussed, and the binding force was analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnham, K. J., Smith, D. G., & Cappai, R. (2007). The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochimica et Biophysica Acta - Biomembranes, 1768, 1976–1990.

    Article  Google Scholar 

  2. Lin, Y. F., Huang, M. C., & Liu, H. C. (2013). Glycogen synthase kinase 3β gene polymorphisms may be associated with bipolar I disorder and the therapeutic response tolithium. Journal of Affective Disorders, 147(1–3), 401–406.

    Article  CAS  Google Scholar 

  3. Brown, A. M., Lemkul, J. A., Schaum, N., & Bevan, D. R. (2014). Simulations of monomeric amyloid β-peptide (1–40) with varying solution conditions and oxidation state of Met35: implications for aggregation. Archives of Biochemistry and Biophysics, 545, 44–52.

    Article  CAS  Google Scholar 

  4. Biswajoy, B., Subrata, K., Sumit, K. D., Suman, B., Roy, D., Mukhopadhyay, T. K., Das, S., & Nand, P. (2013). In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloids and Surfaces B: Biointerfaces, 108, 358–365.

    Article  Google Scholar 

  5. Torres-Vega, J. J., Medrano, L. R., Landauro, C. V., & Rojas-Tapia, J. (2014). Determination of the threshold of nanoparticle behavior: structural and electronic properties study of nano-sized copper. Physica B, 436, 74–79.

    Article  CAS  Google Scholar 

  6. Chen, Y., Wang, D., Zhu, X., Zheng, X., & Feng, L. (2012). Long term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process. Environmental Science & Technology, 46, 12452–12458.

    Article  CAS  Google Scholar 

  7. Maria, V. L., & Bebianno, M. J. (2011). Antioxidant and lipid peroxidation responses inMytilus galloprovincialis exposed to mixtures of benzo(a)pyrene and copper. Comparative Biochemistry and Physiology - Part C, 154, 56–63.

    CAS  Google Scholar 

  8. Griffitt, R. J., Weil, R., Hyndman, K. A., Denslow, N. D., Powers, K., Taylor, D., & Barber, D. S. (2007). Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environmental Science & Technology, 41, 8178–8186.

    Article  CAS  Google Scholar 

  9. Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., Wang, T., Yuan, H., Ye, C., Zhao, F., Chai, Z., Zhu, C., Fang, X., Ma, B., & Wan, L. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 163, 109–120.

    Article  CAS  Google Scholar 

  10. Prabhu, B. M., Ali, S. F., Murdock, R. C., Hussain, S. M., & Srivatsan, M. (2010). Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology, 04, 150–160.

    Article  CAS  Google Scholar 

  11. Zatta, P., Ricchelli, F., Drago, D., Filippi, B., & Tognon, G. (2005). Aluminum-triggered structural modifications and aggregation of beta-amyloids. Cellular and Molecular Life Sciences, 62, 1724–1733.

    Article  Google Scholar 

  12. Exley, C. (2006). Aluminium and iron, but neither copper nor zinc, are key to the precipitation of beta-sheets of A beta (42) in senile plaque cores in Alzheimer’s disease. Journal of Alzheimer’s Disease, 10, 173–177.

    Google Scholar 

  13. Dong, S. W., Gao, Z. H., Shen, X. Y., Xue, H. W., & Li, X. (2014). Comparative proteomic analysis shows an elevation of Mdh1 associated with hepatotoxicity induced by copper nanoparticle in rats. Journal of Integrative Agriculture, 13(05), 1073–1081.

    Article  CAS  Google Scholar 

  14. Karlsson, A. L., Cronholm, P., Hedberg, Y., Tornberg, M., Battice, L. D., Svedhem, S., & Odnevall, I. (2013). Cell membrane damage and protein interaction induced by copper containing nanoparticles—importance of the metal release process. Toxicology, 313(01), 59–69.

    Article  CAS  Google Scholar 

  15. Sahin, N. O., & Burgess, D. J. (2003). Competitive interfacial adsorption of blood proteins. Farmaco, 58, 1017–1021.

    Article  CAS  Google Scholar 

  16. Song, G. L., & Du, Q. Z. (2010). Isolation of a polysaccharide with anticancer activity from Auricularia polytricha using high-speed countercurrent chromatography with an aqueous two-phase system. Journal of Chromatography A, 1217, 5930–5934.

    Article  CAS  Google Scholar 

  17. Xiao, Q., Huang, S., Qi, Z. D., Zhou, B., He, Z. K., & Liu, Y. (2008). Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochimica et Biophysica Acta - Proteins & Proteomics, 1487, 1020–1027.

    Article  Google Scholar 

  18. Biancalana, M., & Koide, S. (1804). Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta - Proteins & Proteomics, 2010, 1405–1412.

    Google Scholar 

  19. Krebs, M. R. H., Bromley, E. H. C., & Donald, A. M. (2005). The binding of thioflavin-T to amyloid fibrils: localisation and implications. Journal of Structural Biology, 149, 30–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of Scientific Research Foundation of Minnan Normal University (L20629) and Key Research Items of Fujian Province (2012N0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhang, G. & Zou, J. The Aggregation of Aβ42 Induced by Nano Copper and the Antagonistic Action of Polysaccharides. Appl Biochem Biotechnol 175, 1557–1566 (2015). https://doi.org/10.1007/s12010-014-1385-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1385-1

Keywords

Navigation