Skip to main content
Log in

Effect of the Antifreeze Protein from the Arctic Yeast Leucosporidium sp. AY30 on Cryopreservation of the Marine Diatom Phaeodactylum tricornutum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Antifreeze proteins are a group of proteins that allow organisms to survive in subzero environments. These proteins possess thermal hysteresis and ice recrystallization inhibition activities. In the present study, we demonstrated the efficiency of a recombinant antifreeze protein from the Arctic yeast Leucosporidium sp. AY30, LeIBP, in cryopreservation of the marine diatom Phaeodactylum tricornutum, which is one of the classical model diatoms and has most widely been studied with regard to its ecology, physiology, biochemistry, and molecular biology. P. tricornutum cells were frozen by either a fast or two-step freezing method in freezing medium containing 10 % dimethyl sulfoxide, glycerol, propylene glycol, and ethylene glycol, respectively, with or without LeIBP supplement. When cells were frozen using the two-step freezing method, cell survival was significantly increased and statistically the same as that of unfrozen native cells in the presence of 0.1 mg/ml LeIBP in 10 % propylene glycol or 10 % ethylene glycol at day 11 of post-thaw culture. In the presence of LeIBP, the concentration of chlorophyll a was dramatically increased to 14-, 48-, 1.6-, and 8.8-fold when cells were frozen in freezing medium containing dimethyl sulfoxide (DMSO), glycerol, propylene glycol (PG), and ethylene glycol (EG), respectively. Scanning electron microscopy observations demonstrated that the cells were also successfully preserved and epitheca or hypotheca were not deformed. These results demonstrate that LeIBP was successfully applied to improve cryopreservation of the marine diatom P. tricornutum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Smetacek, V. (1999). Protist, 150, 25–32.

    Article  CAS  Google Scholar 

  2. Depauw, F. A., Rogato, A., Ribera d’Alcala, M., & Falciatore, A. (2012). Journal of Experimental Botany, 63, 1575–1591.

    Article  CAS  Google Scholar 

  3. De Martino, A., Meichenin, A., Shi, J., Pan, K., & Bowler, C. (2007). Journal of Phycology, 43, 992–1009.

    Article  Google Scholar 

  4. Howland, R. J., Tappin, A. D., Uncles, R. J., Plummer, D. H., & Bloomer, N. J. (2000). Science of the Total Environment, 251–252, 125–138.

    Article  Google Scholar 

  5. Borowitzka, M. A., Chiappino, M. L., & Volcani, B. E. (1977). Journal of Phycology, 13, 162–170.

    Google Scholar 

  6. Borowitzka, M. A., & Volcani, B. E. (1978). Journal of Phycology, 14, 10–21.

    Article  Google Scholar 

  7. Wilson, D. P. (1946). Journal of the Marine Biological Association of the UK, 26, 235–270.

    Article  Google Scholar 

  8. De Martino, A., Bartual, A., Willis, A., Meichenin, A., Villazan, B., Maheswari, U., & Bowler, C. (2011). Protist, 162, 462–481.

    Article  Google Scholar 

  9. Day, J. G., & DeVille, M. M. (1995). Methods in Molecular Biology, 38, 81–89.

    CAS  Google Scholar 

  10. Day, J. G., Fleck, R. A., & Benson, E. E. (2000). Journal of Applied Phycology, 12, 369–377.

    Article  Google Scholar 

  11. Round, F. E., Crawford, R. M. & Mann, D. G. (1990). The diatoms: biology and morphology of the genera. 1 ed. Cambridge University Press.

  12. Day, J. G., & Brand, J. J. (2005). In R. A. Anderson (Ed.), Algal culturing techniques (pp. 165–187). New York: Academic Press.

    Google Scholar 

  13. Day, J. G. (2007). In J. G. Day & G. N. Stacey (Eds.), Cryopreservation and freeze-drying protocols (pp. 141–151). Totowa: Humana Press.

    Chapter  Google Scholar 

  14. Lee, J. J., & Soldo, A. T. (1992). Protocols in protozoology (ed). Lawrence, Kansas: Wiley-Blackwell.

    Google Scholar 

  15. Morris, G. J. (1978). British Phycological Journal, 13, 15–24.

    Article  Google Scholar 

  16. Bodas, K. C., Diller, K. R., & Brand, J. J. (1995). Cryo Letters, 16, 267–274.

    Google Scholar 

  17. Day, J. G., Benson, E. E., Harding, K., Knowles, B., Idowu, M., Bremner, D., Santos, L., Santos, F., Friedl, T., Lorenz, M., Lukesova, A., Elster, J., Lukavsky, J., Herdman, M., Rippka, R., & Hall, T. (2005). Cryo Letters, 26, 231–238.

    CAS  Google Scholar 

  18. Hubálek, Z. (2003). Cryobiology, 46, 205–229.

    Article  Google Scholar 

  19. Franks, F. (1985). Biophysics and biochemistry at low temperatures (ed). New York: Cambridge University Press.

    Google Scholar 

  20. Taylor, R., & Fletcher, R. (1999). Journal of Applied Phycology, 10, 481–501.

    Article  Google Scholar 

  21. Fuller, B. J. (2004). Cryo Letters, 25, 375–388.

    CAS  Google Scholar 

  22. Adler, S., Pellizzer, C., Paparella, M., Hartung, T., & Bremer, S. (2006). Toxicology in Vitro, 20, 265–271.

    Article  CAS  Google Scholar 

  23. Iwatani, M., Ikegami, K., Kremenska, Y., Hattori, N., Tanaka, S., Yagi, S., & Shiota, K. (2006). Stem Cells, 24, 2549–2556.

    Article  CAS  Google Scholar 

  24. Thaler, R., Spitzer, S., Karlic, H., Klaushofer, K., & Varga, F. (2012). Epigenetics, 7, 635–651.

    Article  CAS  Google Scholar 

  25. DeVries, A. L., & Wohlschlag, D. E. (1969). Science, 163, 1073–1075.

    Article  CAS  Google Scholar 

  26. Lee, J. K., Park, K. S., Park, S., Park, H., Song, Y. H., Kang, S. H., & Kim, H. J. (2010). Cryobiology, 60, 222–228.

    Article  CAS  Google Scholar 

  27. Raymond, J. A., Fritsen, C., & Shen, K. (2007). FEMS Microbiology Ecology, 61, 214–221.

    Article  CAS  Google Scholar 

  28. Atici, O., & Nalbantoglu, B. (2003). Phytochemistry, 64, 1187–1196.

    Article  CAS  Google Scholar 

  29. Duman, J. G., & Olsen, T. M. (1993). Cryobiology, 30, 322–328.

    Article  Google Scholar 

  30. Gilbert, J. A., Davies, P. L., & Laybourn-Parry, J. (2005). FEMS Microbiology Letters, 245, 67–72.

    Article  CAS  Google Scholar 

  31. Graether, S. P., & Sykes, B. D. (2004). European Journal of Biochemistry, 271, 3285–3296.

    Article  CAS  Google Scholar 

  32. Yeh, Y., & Feeney, R. E. (1996). Chemical Reviews, 96, 601–618.

    Article  CAS  Google Scholar 

  33. Chao, H., Davies, P. L., & Carpenter, J. F. (1996). Journal of Experimental Biology, 199, 2071–2076.

    CAS  Google Scholar 

  34. Kang, J. S., & Raymond, J. A. (2004). Cryo Letters, 25, 307–310.

    CAS  Google Scholar 

  35. Lee, S. G., Koh, H. Y., Lee, J. H., Kang, S. H., & Kim, H. J. (2012). Applied Biochemistry and Biotechnology, 167, 824–834.

    Article  CAS  Google Scholar 

  36. Arav, A., Rubinsky, B., Seren, E., Roche, J. F., & Boland, M. P. (1994). Theriogenology, 41, 107–112.

    Article  Google Scholar 

  37. Koushafar, H., & Rubinsky, B. (1997). Urology, 49, 421–425.

    Article  CAS  Google Scholar 

  38. Matsumoto, S., Matsusita, M., Morita, T., Kamachi, H., Tsukiyama, S., Furukawa, Y., Koshida, S., Tachibana, Y., Nishimura, S., & Todo, S. (2006). Cryobiology, 52, 90–98.

    Article  CAS  Google Scholar 

  39. Payne, S. R., Oliver, J. E., & Upreti, G. C. (1994). Cryobiology, 31, 180–184.

    Article  CAS  Google Scholar 

  40. Lee, J. H., Lee, S. G., Do, H., Park, J. C., Kim, E., Choe, Y. H., Han, S. J., & Kim, H. J. (2013). Applied Biochemistry and Biotechnology, 97, 3383–3393.

    CAS  Google Scholar 

  41. Guillard, R. R. L. (1975). In W. L. Smith & M. H. Chanley (Eds.), Culture of marine invertebrate animals (pp. 29–60). New York: Springer.

    Chapter  Google Scholar 

  42. Park, K. S., Lee, J. H., Park, S. I., Do, H., Kim, E. J., Kang, S. H., & Kim, H. J. (2012). Cryobiology, 64, 286–296.

    Article  CAS  Google Scholar 

  43. Welschmeyer, N. A. (1994). Limnology and Oceanography, 39, 1985–1992.

    Article  CAS  Google Scholar 

  44. Mitbavkar, S., & Anil, A. C. (2006). Cryobiology, 53, 143–147.

    Article  CAS  Google Scholar 

  45. Polge, C., Smith, A. U., & Parkes, A. S. (1949). Nature, 164, 666.

    Article  CAS  Google Scholar 

  46. Day, J. G., Watanabe, M. M., Morris, G. J., Fleck, R. A., & McLellan, M. R. (1997). Journal of Applied Phycology, 9, 121–127.

    Article  Google Scholar 

  47. Kim, H. J. (2011). Ocean and Polar Research, 33, 303–308.

    Article  Google Scholar 

  48. Tanniou, A., Turpin, V., & Lebeau, T. (2012). Cryobiology, 65, 45–50.

    Article  CAS  Google Scholar 

  49. McGrath, M. S., Daggett, P. M., & Dilworth, S. (1978). Journal of Phycology, 14, 521–525.

    Article  Google Scholar 

  50. Carpenter, J. F., & Hansen, T. N. (1992). Proceedings of the National Academy of Sciences of the United States of America, 89, 8953–8957.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Korea Polar Research Institute (PE14070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Gu Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, H.Y., Lee, J.H., Han, S.J. et al. Effect of the Antifreeze Protein from the Arctic Yeast Leucosporidium sp. AY30 on Cryopreservation of the Marine Diatom Phaeodactylum tricornutum . Appl Biochem Biotechnol 175, 677–686 (2015). https://doi.org/10.1007/s12010-014-1337-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1337-9

Keywords

Navigation