Skip to main content
Log in

Improvement of the Fermentative Activity of Lactic Acid Bacteria Starter Culture by the Addition of Mn2+

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Production of lactic acid bacteria (LAB) starter with raw material has received much scientific investigation, but little information is available on the influences of some trace elements on the growth and fermentative activity of LAB. Based on this fact, this paper aimed to investigate the effects of Mn2+ on the performance of Lactobacillus plantarum CX-15 starter with Jerusalem artichoke (JA) as the main medium substrate. The results showed that Mn2+ addition had a significant beneficial affect on the fermentative activity of L. plantarum CX-15 starter. In contrast, the lack of Mn2+ would cause the subsequent fermentation significantly slower, whether the cell density in starter culture was higher or lower. The possible mechanism of these phenomenons was further elucidated by the time course analysis of the specific activities of metabolism key enzymes during the culture processes of L. plantarum CX-15 starter. Compared to the fermentation processes without Mn2+ addition, it was found that Mn2+ addition would enhance the lactate dehydrogenase (LDH) activity but reduce the activities of pyruvate dehydrogenase (PDH) and ATPase activity. Therefore, it could be concluded that the improvement of L. plantarum starter fermentative activity was probably a consequence of Mn2+ acting as “metabolic switch,” which regulated the metabolic flux from pyruvic acid to lactic acid and other metabolism pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Settanni, L., Gaglio, R., Guarcello, R., Francesca, N., Carpino, S., Sannino, C., & Todaro, M. (2013). International Dairy Journal, 32(2), 126–132.

    Article  CAS  Google Scholar 

  2. Møller, K. K., Rattray, F. P., & Ardö, Y. (2013). International Dairy Journal, 33(2), 163–174.

    Article  Google Scholar 

  3. Rubio, R., Jofré, A., Martín, B., Aymerich, T., & Garriga, M. (2013). Food Microbiology, 38, 303–311.

    Article  Google Scholar 

  4. Coda, R., Cagno, D. R., Gobbetti, M., & Rizzello, C. G. (2014). Food Microbiology, 37, 51–58.

  5. Lee, Y. M., Kim, J. S., & Kim, W. J. (2012). Food Science and Biotechnology, 21(3), 653–659.

    Article  CAS  Google Scholar 

  6. Xiong, T., Song, S., Huang, X., Feng, C., Liu, G., Huang, J., & Xie, M. (2013). Journal of Food Science, 78(1), 84–89.

    Article  Google Scholar 

  7. Soomro, A., Masud, T., & Anwaar, K. (2002). Pakistan Journal of Nutrition, 1(1), 20–24.

    Article  Google Scholar 

  8. Chang, J. H., Shim, Y., Cha, S. K., & Chee, K. (2010). Journal of Applied Microbiology, 109(1), 220–230.

    CAS  Google Scholar 

  9. Leroy, F., & De Vuyst, L. (2004). Trends in Food Science and Technology, 15(2), 67–78.

    Article  CAS  Google Scholar 

  10. Hugo, A., De Antoni, G., & Pérez, P. (2006). International Journal of Food Microbiology, 111(3), 191–196.

    Article  CAS  Google Scholar 

  11. Gardner, N. J., Savard, T., Obermeier, P., Caldwell, G., & Champagne, C. P. (2001). International Journal of Food Microbiology, 64(3), 261–275.

    Article  CAS  Google Scholar 

  12. Schiraldi, C., Adduci, V., Valli, V., Maresca, C., Giuliano, M., Lamberti, M., Cartenì, M., & De Rosa, M. (2003). Biotechnology and Bioengineering, 82(2), 213–222.

    Article  CAS  Google Scholar 

  13. Jianling, B., Shuping, M., Wanling, Z., & Yingtuan, H. (2007). Food and Fermentation Industries, 33(2), 79–83.

    Google Scholar 

  14. Siaterlis, A., Deepika, G., & Charalampopoulos, D. (2009). Letters in Applied Microbiology, 48(3), 295–301.

    Article  CAS  Google Scholar 

  15. Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X., & Gibbs, P. (2004). International Dairy Journal, 14(10), 835–847.

    Article  CAS  Google Scholar 

  16. Fitzpatrick, J. J., Ahrens, M., & Smith, S. (2001). Process Biochemistry, 36(7), 671–675.

    Article  CAS  Google Scholar 

  17. Raccach, M., & Marshall, P. (1985). Journal of Food Science, 50(3), 665–668.

    Article  CAS  Google Scholar 

  18. Senthuran, A., Senthuran, V., Mattiasson, B., & Kaul, R. (1997). Biotechnology and Bioengineering, 55(6), 841–853.

    Article  CAS  Google Scholar 

  19. Choi, H. Y., Ryu, H. K., Park, K. M., Lee, E. G., Lee, H., Kim, S.-W., & Choi, E.-S. (2012). Bioresource Technology, 114, 745–747.

    Article  CAS  Google Scholar 

  20. Bajpai, P. K., & Bajpai, P. (1991). Enzyme and Microbial Technology, 13(4), 359–362.

    Article  CAS  Google Scholar 

  21. Miller, G. L. (1959). Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  22. Bradford, M. M. (1976). Analytical Biochemistry, 72(1), 248–254.

    Article  CAS  Google Scholar 

  23. Sun, Y., Oberley, L. W., & Li, Y. (1988). Clinical Chemistry, 34(3), 497–500.

    CAS  Google Scholar 

  24. Xu, G. Q., Chu, J., Zhuang, Y. P., Wang, Y. H., & Zhang, S.-L. (2008). Biochemical Engineering Journal, 38(2), 189–197.

    Article  CAS  Google Scholar 

  25. Wang, X., Bohlscheid, J., & Edwards, C. (2003). Journal of Applied Microbiology, 94(3), 349–359.

    Article  CAS  Google Scholar 

  26. Kisser, M., Kubicek, C., & Röhr, M. (1980). Archives of Microbiology, 128(1), 26–33.

    Article  CAS  Google Scholar 

  27. Solaini, G., Sgarbi, G., & Baracca, A. (2011). Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807(6), 534–542.

    Article  CAS  Google Scholar 

  28. Condon, S. (1987). Fems Microbiology Letters, 46(3), 269–280.

    Article  CAS  Google Scholar 

  29. Archibald, F. S., & Fridovich, I. (1981). Journal of Bacteriology, 146(3), 928–936.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was partially funded by the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Dong, Y., Su, P. et al. Improvement of the Fermentative Activity of Lactic Acid Bacteria Starter Culture by the Addition of Mn2+ . Appl Biochem Biotechnol 174, 1752–1760 (2014). https://doi.org/10.1007/s12010-014-1156-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1156-z

Keywords

Navigation