Skip to main content
Log in

Accelerating Effect of Bio-Reduced Graphene Oxide on Decolorization of Acid Red 18 by Shewanella algae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the effects of bio-reduced graphene oxide (BRGO) on the bio-reduction of Acid Red 18 (AR 18) by Shewanella algae were first investigated, and a possible mechanism of BRGO-mediated AR 18 bio-decolorization was proposed. The prepared BRGO was characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD), infrared spectroscopy (IR), Raman spectra, and transmission electron microscope (TEM), respectively. Moreover, electrochemical experiment demonstrated that BRGO is of good electrical conductivity. AR 18 bio-decolorization could be enhanced in dose-dependent manner of BRGO. The maximum increase in AR 18 removal efficiency was observed at a dose of 0.075 g L−1 BRGO. Under the same conditions, BRGO could also improve the decolorization rates of Acid Red 88, Acid Red 27, and Acid Red 73. During decolorization, the formation of BRGO and cells composite was observed, which is beneficial for transferring electrons from cells to BRGO. In addition, BRGO could accelerate the bio-decolorization of AR 18 under saline conditions (2–7 %). These findings indicate that BRGO can accelerate the electrons transfer from cells to azo dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allen, M. J., Tung, V. C., & Kaner, R. B. (2009). Honeycomb carbon: a review of graphene. Chemical Reviews, 110, 132–145.

    Article  Google Scholar 

  2. Geim, A. K. (2009). Graphene: status and prospects. Science, 324, 1530–1534.

    Article  CAS  Google Scholar 

  3. Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S., & Govindaraj, A. (2009). Graphene: the new two-dimensional nanomaterial. Angewandte Chemie, International Edition, 48, 7752–7777.

    Article  CAS  Google Scholar 

  4. Chen, W., Duan, L., & Zhu, D. (2007). Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental Science & Technology, 41, 8295–8300.

    Article  CAS  Google Scholar 

  5. Pan, B., & Xing, B. (2008). Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology, 42, 9005–9013.

    Article  CAS  Google Scholar 

  6. Fu, H., & Zhu, D. (2013). Graphene oxide-facilitated reduction of nitrobenzene in sulfide-containing aqueous solutions. Environmental Science & Technology, 47, 4204–4210.

    Article  CAS  Google Scholar 

  7. Gurunathan, S., Han, J. W., Eppakayala, V., & Kim, J. H. (2013). Microbial reduction of graphene oxide by Escherichia coli: a green chemistry approach. Colloids and Surfaces. B, Biointerfaces, 102, 772–777.

    Article  CAS  Google Scholar 

  8. Saratale, R. G., & Saratale, G. D. (2011). Bacterial decolorization and degradation of azo dyes: a review. Journal Taiwan Institute Chemical Engineers, 42, 138–157.

    Article  CAS  Google Scholar 

  9. Pandey, A., Singh, P., & Iyengar, L. (2007). Bacterial decolorization and degradation of azo dyes. International Biodeterioration & Biodegradation, 59, 73–84.

    Article  CAS  Google Scholar 

  10. Stolz, A. (2001). Basic and applied aspects in the microbial degradation of azo dyes. Applied Microbiology and Biotechnology, 56, 69–80.

    Article  CAS  Google Scholar 

  11. Dos Santos, A. B., Cervantes, F. J., & Van Lier, J. B. (2007). Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresource Technology, 98, 2369–2385.

    Article  Google Scholar 

  12. Emilia Rios-Del Toro, E., Celis, L. B., Cervantes, F. J., & Rangel-Mendez, J. R. (2013). Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator. Journal of Hazardous Materials, 260, 967–974.

    Article  CAS  Google Scholar 

  13. Pereira, L., Pereira, R., Pereira, M. F. R., Van der Zee, F. P., Cervantes, F. J., & Alves, M. M. (2010). Thermal modification of activated carbon surface chemistry improves its capacity as redox mediator for azo dye reduction. Journal of Hazardous Materials, 183, 931–939.

    Article  CAS  Google Scholar 

  14. Shen, W., Li, Z., & Liu, Y. (2008). Surface chemical functional groups modification of porous carbon. Recent Patents on Chemical Engineering, 1, 27–40.

    Article  CAS  Google Scholar 

  15. Khanra, P., Kuila, T., Kim, N. H., Bae, S. H., Yu, D., & Lee, J. H. (2012). Simultaneous biofunctionalization and reduction of graphene oxide by baker’s yeast. Chemical Engineering Journal, 183, 526–533.

    Article  CAS  Google Scholar 

  16. Kaniyoor, A., Baby, T. T., & Ramaprabhu, S. (2010). Graphene synthesis via hydrogen induced low temperature exfoliation of graphiteoxide. Journal of Materials Chemistry, 20, 8467–8469.

    Article  CAS  Google Scholar 

  17. Dreyer, D. R., Park, S., Bielawski, C., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228.

    Article  CAS  Google Scholar 

  18. Yuan, Y., Zhou, S. G., Zhao, B., Zhuang, L., & Wang, Y. Q. (2012). Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells. Bioresource Technology, 116, 453–458.

    Article  CAS  Google Scholar 

  19. Brutinel, E. D., & Gralnick, J. A. (2012). Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Applied Microbiology and Biotechnology, 91, 43–48.

    Google Scholar 

  20. Field, J. A., & Brady, J. (2003). Riboflavin as a redox mediator accelerating the reduction of the azo dye Mordant Yellow 10 by anaerobic granular sludge. Water Sci Technology, 48, 187–193.

    CAS  Google Scholar 

  21. von Canstein, H., Ogawa, J., Shimizu, S., & Lloyd, J. R. (2008). Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Applied and Environmental Microbiology, 74, 615–623.

    Article  Google Scholar 

  22. Pearce, C. I., Christie, R., Boothman, C., Canstein, H. V., Guthrie, J. T., & Lloyd, J. R. (2006). Reactive azo dye reduction by Shewanella strain J18 143. Biotechnology and Bioengineering, 95, 692–703.

    Article  CAS  Google Scholar 

  23. Hong, Y., Guo, J., Xu, Z., Xu, M., & Sun, G. (2007). Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12. Journal of Microbiology and Biotechnology, 17, 428–437.

    CAS  Google Scholar 

  24. Khalid, A., Arshad, M., & Crowley, D. E. (2008). Decolorization of azo dyes by Shewanella sp. under saline conditions. Applied Microbiology and Biotechnology, 79, 1053–1059.

    Article  CAS  Google Scholar 

  25. Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4, 5731–5736.

    Article  CAS  Google Scholar 

  26. Carliell, C. M., Barclay, S. J., Shaw, C., Wheatley, A. D., & Buckley, C. A. (1998). The effect of salts used in textile dyeing on microbial decolourisation of a reactive azo dye. Environmental Technology, 19, 1133–1137.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This subject was supported by the National Natural Science foundation of China (No. 21077019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 756 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HK., Lu, H., Wang, J. et al. Accelerating Effect of Bio-Reduced Graphene Oxide on Decolorization of Acid Red 18 by Shewanella algae . Appl Biochem Biotechnol 174, 602–611 (2014). https://doi.org/10.1007/s12010-014-1106-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1106-9

Keywords

Navigation