Skip to main content

Advertisement

Log in

Characterization of a Family B DNA Polymerase from the Hyperthermophilic Crenarchaeon Ignicoccus hospitalis KIN4/I and Its Application to PCR

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A family B DNA polymerase gene from the hyperthermophilic crenarchaeon Ignicoccus hospitalis KIN4/I was highly expressed under the control of T7lac promoter of pET-28ARG in Escherichia coli BL21-CodonPlus(DE3)-RIL cells. The produced I. hospitalis (Iho) DNA polymerase was purified by heat treatment followed by HisTrap™ HP column and HiTrap™ SP column chromatographies. The molecular mass of the purified Iho DNA polymerase was 88 kDa as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimal pH for Iho DNA polymerase activity was 7.0 and the optimal temperature was 70 °C. Iho DNA polymerase was strongly activated by the presence of magnesium ion at an optimum concentration of 3 mM. The optimal concentration of KCl for Iho DNA polymerase activity was 60 mM. The half-life of the enzyme at 94 °C was about 2 h. The optimal conditions for polymerase chain reaction (PCR) were determined. Iho DNA polymerase possesses 3′ → 5′ exonuclease activity, and the fidelity of the Iho DNA polymerase was similar to that of Pfu and Vent DNA polymerases. However, Iho DNA polymerase provided more enhanced efficiency of PCR amplification than Pfu and Vent DNA polymerases. Iho DNA polymerase could successfully amplify a 2-kb λ DNA target with a 10-s extension time and could amplify a DNA fragment up to 8 kb λ DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cann, I. K. O., Ishino, S., Nomura, N., Sako, Y., & Ishino, Y. (1999). Journal of Bacteriology, 181, 5984–5992.

    CAS  Google Scholar 

  2. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., & Erlich, H. A. (1998). Science, 239, 487–491.

    Article  Google Scholar 

  3. Lundberg, K. S., Shoemaker, D. D., Adams, M. W., Short, J. M., Sorge, J. A., & Mathur, E. J. (1991). Gene, 108, 1–6.

    Article  CAS  Google Scholar 

  4. Kong, H., Kucera, R. B., & Jack, W. E. (1993). Journal of Biological Chemistry, 268, 1965–1975.

    CAS  Google Scholar 

  5. Takagi, M., Nishioka, M., Kakihara, H., Kitabayashi, M., Inoue, H., Kawakami, B., Oka, M., & Imanaka, T. (1997). Applied and Environmental Microbiology, 63, 4504–4510.

    CAS  Google Scholar 

  6. Griffiths, K., Nayak, S., Park, K., Mandelman, D., Modrell, B., Lee, J., Ng, B., Gibbs, M. D., & Bergquist, P. L. (2007). Protein Expression and Purification, 52, 19–30.

    Article  CAS  Google Scholar 

  7. Marsic, D., Flaman, J. M., & Ng, J. D. (2008). Extremophiles, 12, 775–788.

    Article  CAS  Google Scholar 

  8. Lee, J. I., Kim, Y. J., Bae, H. J., Cho, S. S., Lee, J. H., & Kwon, S. T. (2010). Applied Biochemistry and Biotechnology, 160, 1585–1599.

    Article  CAS  Google Scholar 

  9. Gueguen, Y., Rolland, J. I., Lecompte, O., Azam, P., Romancer, G. L., Flament, D., Raffin, J. P., & Dietrich, J. (2001). European Journal of Biochemistry, 268, 5961–5969.

    Article  CAS  Google Scholar 

  10. Uemori, T., Ishino, Y., Doi, H., & Kato, I. (1995). Journal of Bacteriology, 177, 2164–2177.

    CAS  Google Scholar 

  11. Ali, S. F., Rashid, N., Imanaka, T., & Akhtar, M. J. (2011). Bioscience and Bioengineering, 112, 118–123.

    Article  CAS  Google Scholar 

  12. Edgell, D. R., Klenk, H. P., & Doolittle, W. F. (1997). Journal of Bacteriology, 179, 2632–2640.

    CAS  Google Scholar 

  13. Paper, W., Jahn, U., Hohn, M. J., Kronner, M., Näther, D. J., Durghardt, T., Rachel, R., Stetter, K. O., & Huber, H. (2007). International Journal of Systematic and Evolutionary Microbiology, 57, 803–808.

    Article  CAS  Google Scholar 

  14. Podar, M., Anderson, I., Makarova, K. S., Elkins, J. G., Ivamova, N., Wall, M. A., Lykids, A., Mavoromatis, K., Sun, H., Hudson, M. E., Chen, W., Deciu, C., Hutchison, D., Eads, J. R., Anderson, A., Fernandes, F., Szeto, E., Lapidus, A., Kyrpides, N. C., Saier, M. H., Jr., Richardson, P. M., Rachel, R., Huber, H., Eisen, J. A., Koonin, E. V., Keller, M., & Stetter, K. O. (2008). Gemone Biology, 9, R158.1–18.

  15. Choi, J. J., Nam, K. H., Min, B., Kim, S. J., Söll, D., & Kwon, S. T. (2006). Journal of Molecular Biology, 356, 1093–1106.

    Article  CAS  Google Scholar 

  16. Kim, K. P., Cho, S. S., Lee, K. K., Youn, M. H., & Kwon, S. T. (2011). Journal of Biotechnology, 155, 156–163.

    Google Scholar 

  17. Cho, S. S., Kim, K. P., Lee, K. K., Yoon, M. H., & Kwon, S. T. (2012). Enzyme and Microbial Technology, 51, 334–341.

    Article  CAS  Google Scholar 

  18. Choi, J. J., Song, J. G., Nam, K. H., Lee, J. I., Bae, H. J., Kim, G. A., Sun, Y., & Kwon, S. T. (2008). Applied and Environmental Microbiology, 74, 6563–6569.

    Article  CAS  Google Scholar 

  19. Cline, J., Braman, J. C., & Hogrefe, H. H. (1996). Nucleic Acids Research, 24, 3546–3551.

    Article  CAS  Google Scholar 

  20. Blanco, L., Bernad, A., Blasco, M. A., & Salas, M. (1991). Gene, 100, 27–38.

    Article  CAS  Google Scholar 

  21. Ito, J., & Braithwaite, D. K. (1993). Nucleic Acids Research, 21, 787–802.

    Article  Google Scholar 

  22. Wong, S. W., Wahl, A. F., Yuan, P. M., Aral, N., Pearson, B. E., Arai, K. I., Korn, D., Hunkapiller, M. W., & Wang, T. S. F. (1988). EMBO Journal, 7, 37–47.

    CAS  Google Scholar 

  23. Hamilton, S. C., Farchaus, J. W., & Davis, M. C. (2001). Biotechniques, 31, 370–383.

    CAS  Google Scholar 

  24. Zheng, R., Matsui, E., Shen, Y., Musti, K. V., Feng, Y., Darnis, S., Kawarabayasi, Y., Kikuchi, H., Harata, K., & Matsui, I. (2001). Extremophiles, 5, 111–117.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2013R1A1A2008229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Tae Kwon.

Additional information

Kang-Jin Seo and Sung Suk Cho have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, KJ., Cho, S.S., Ppyun, H.W. et al. Characterization of a Family B DNA Polymerase from the Hyperthermophilic Crenarchaeon Ignicoccus hospitalis KIN4/I and Its Application to PCR. Appl Biochem Biotechnol 173, 1108–1120 (2014). https://doi.org/10.1007/s12010-014-0918-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0918-y

Keywords

Navigation