Skip to main content
Log in

Hypolipidaemic Effects of Methanol Extract of Holoptelea integrifolia (Roxb.) Planchon Bark in Diet-Induced Obese Rats

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The leaf and bark paste of Holoptelea integrifolia is traditionally used for the treatment of obesity in Asian countries. However, no scientific studies have been undertaken to reveal the actual mechanism of action. The present study aimed to investigate the hypolipidaemic effect of H. integrifolia and its mechanism in diet-induced obese rat model. After 4 weeks of oral administration, blood samples were collected for the estimation of serum lipids, lecithin: cholesterolacyltransferase (LCAT) apolipoproteins (apo) and liver for HMG-CoA reductase (HMGR) assay. The faecal samples were also collected to estimate the faecal fat content. The H. integrifolia treatment markedly lowered body weight, serum lipids and apo B and increase high-density lipoprotein-cholesterol and apo A1 concentrations. In this study, HMGR activity was enormously reduced, which helps to reduce cholesterol biosynthesis and an increase in LCAT activity was also observed. The detailed faecal analysis showed a remarkable increase in faecal lipids, which indicates the ability to inhibit intestinal fat absorption. The methanol fraction of H. integrifolia on LC-MS and tandem mass spectrometry analysis shows the presence of a compound, 3-(7-ethoxy-4-methyl-2-oxo-2H-chromen-3-yl)propanoate (C1). The result showed that the significant hypolipidaemic effect of H. integrifolia may be linked to its ability to inhibit HMGR activity and block intestinal fat absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO. (2000). World Health Organization Technical Report Series, 894, 1–253.

    Google Scholar 

  2. Warrier, P. K., Nambir, V. P. K., & Ramankutty, C. (2004). Indian medicinal plants. A compendium of 500 species, vol. 4. Hyderabad: Orient Longman Pvt. Ltd.

    Google Scholar 

  3. Dinesh, K., Karunesh, K., Jyoti, G., Navita, B. and Sunil, K. (2012). Asian Pacific Journal of Tropical Biomedicine 2, S1200–1205.

  4. Gokaraju, G R., Gokaraju, R R., Golakoti, T., Sengupta K., Bhupathiraju, K. (2010). US patent 20100203078.

  5. Bambhole, V. D., & Jiddewar, G. G. (1985). Sachitra Ayurved, 37, 557–561.

    Google Scholar 

  6. Graham, J. G., Quinn, M. L., Fabricant, D. S., & Farnsworth, N. R. (2000). Journal of Ethnopharmacology, 73, 347–377.

    Article  CAS  Google Scholar 

  7. Sharma, P. V. (2000). Caraka samhita. Varanasi: Chaukhambha Orientalia.

    Google Scholar 

  8. Xu, C., Haiyan, Z., Hua, Z., Jianhong, Z., & Pin, D. (2009). International Journal of Biological Macromolecules, 44, 138–142.

    Article  CAS  Google Scholar 

  9. Reeves, P. G. (1997). Journal of Nutrition, 127, 838–841.

    Google Scholar 

  10. Pahua-Ramos, M. E., Ortiz-Moreno, A., Chamorro-Cevallos, G., Hernádez-Navarro, M. D., Garduó Siciliano, L., Necoechea-Mondragó, H., & Hernádez-Ortega, M. (2012). Plant Foods for Human Nutrition, 67, 10–16.

    Article  CAS  Google Scholar 

  11. National Cholesterol Education Program. (2002). Circulation, 106, 3143–3421.

    Google Scholar 

  12. Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Clinical Chemistry, 18, 499–502.

    CAS  Google Scholar 

  13. Rao, A. V., & Ramakrishnan, S. (1975). Clinical Chemistry, 21, 1523–1525.

    CAS  Google Scholar 

  14. Nagasaki, T., & Akanuma, Y. (1977). Clinica Chimica Acta, 75, 371–375.

    Article  CAS  Google Scholar 

  15. Marcovina, S. M., Albers, J. J., Dati, F., Ledue, T. B., & Ritchie, R. F. (1991). Clinical Chemistry, 37, 1676–1682.

    CAS  Google Scholar 

  16. Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). Journal of Biological Chemistry, 226, 497–509.

    CAS  Google Scholar 

  17. Bainton, D., Miller, N. E., Bolton, C. H., Yarnell, J. W., Sweetnam, P. M., Baker, I. A., Lewis, B., & Elwood, P. C. (1992). British Heart Journal, 68, 60–66.

    Article  CAS  Google Scholar 

  18. Peter, W. F. W. (1990). The American Journal of Cardiology, 66, 7–10.

    Article  Google Scholar 

  19. Rader, D. J., Alexander, E. T., Weibel, G. L., Billheimer, J., & Rothblat, G. H. (2009). Journal of Lipid Research, 50, 189–194.

    Article  Google Scholar 

  20. Webb, J. P., Hamilton, J. D., & Dawson, A. M. (1969). Biochimica et Biophysica Acta, 187, 42–52.

    Article  CAS  Google Scholar 

  21. Tobert, J. A. (2003). Nature Reviews. Drug Discovery, 2, 517–526.

    Article  CAS  Google Scholar 

  22. Menge, T., Hartung, H. P., & Stüve, O. (2005). Nature Reviews Neuroscience, 6, 325–331.

    Article  CAS  Google Scholar 

  23. Istvan, E. S. (2002). American Heart Journal, 144, 27–32.

    Article  Google Scholar 

  24. Pyo, Y. H., & Seong, K. S. (2009). Journal of Agricultural and Food Chemistry, 57, 8617–8622.

    Article  CAS  Google Scholar 

  25. Smith, J. D. (2010). Current Opinion in Investigational Drugs, 11, 989–996.

    CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, Mr. Arun KS, is thankful to (UGC-BSR), New Delhi for providing the fellowship to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Augustine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subash, A.K., Augustine, A. Hypolipidaemic Effects of Methanol Extract of Holoptelea integrifolia (Roxb.) Planchon Bark in Diet-Induced Obese Rats. Appl Biochem Biotechnol 169, 546–553 (2013). https://doi.org/10.1007/s12010-012-9993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9993-0

Keywords

Navigation