Skip to main content
Log in

Control of the Harmful Alga Microcystis aeruginosa and Absorption of Nitrogen and Phosphorus by Candida utilis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study is aimed at controlling eutrophication through converting the nutrients such as nitrogen and phosphorus into microbial protein and simultaneously inhibiting the growth of Microcystis aeruginosa by Candida utilis. C. utilis and M. aeruginosa (initial cell density was 2.25 × 107 and 4.15 × 107 cells·mL−1) were cultured together in the absence or presence of a carbon source (glucose) during a 10-day experiment. In the absence of carbon source, the measured removal efficiencies of NH4 +–N and PO4 3−–P were 41.39 ± 2.19 % and 82.93 ± 3.95 %, respectively, at the second day, with the removal efficiency of 67.82 ± 2.29 % for M. aeruginosa at the fourth day. In contrast, the removal efficiencies of NH4 +–N and PO4 3−–P were increased to 87.45 ± 4.25 % and 83.73 ± 3.55 %, respectively, while the removal efficiency of M. aeruginosa decreased to 37.89 ± 8.41 % in the presence of the carbon source (C/N = 2:1). These results showed that the growth of M. aeruginosa was inhibited by C. utilis. Our finding sheds light on a novel potential approach for yeast to consume nutrients and control harmful algal during bloom events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. APHA. (1998). Standard Methods for the Examination of Water and Wastewater (20th ed.). Washington, DC: American Public Health Association (APHA).

    Google Scholar 

  2. Arnold, J. L., Knapp, J. S., & Johnson, C. L. (2000). Water Research, 34, 3699–3708.

    Article  CAS  Google Scholar 

  3. Auesukaree, C., Homma, T., Tochio, H., Shirakawa, M., Kaneko, Y., & Harashima, S. (2004). Journal of Biological Chemistry, 279, 17289–17294.

    Article  CAS  Google Scholar 

  4. Avnimelech, Y. (1999). Aquaculture, 176, 227–235.

    Article  CAS  Google Scholar 

  5. Chang, H.-Q., Yang, X.-E., Fang, Y.-Y., Pu, P.-M., Li, Z.-K., & Rengel, Z. (2006). Journal of Zhejiang University. Science. B, 7, 521–531.

    Article  CAS  Google Scholar 

  6. Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., et al. (2009). Science, 323, 1014–1015.

    Article  CAS  Google Scholar 

  7. Davis, J. R., & Koop, K. (2006). Hydrobiologia, 559, 23–76.

    Article  CAS  Google Scholar 

  8. Figueiredo, D. R., Azeiteiro, U. M., Esteves, S. M., Goncalves, F. J. M., & Pereira, M. J. (2004). Ecotoxicology and Environmental Safety, 59, 151–163.

    Article  Google Scholar 

  9. Figueredo, C. C., & Giani, A. (2001). Hydrobiologia, 445, 165–174.

    Article  Google Scholar 

  10. Gao, G., Qin, B. Q., Sommaruga, R., & Psenner, R. (2007). Hydrobiologia, 581, 177–188.

    Article  Google Scholar 

  11. Hansson, L. A., Annadotter, H., Bergman, E., Hamrin, S. F., Jeppesen, E., Kairesalo, T., et al. (1998). Ecosystems, 1, 558–574.

    Article  Google Scholar 

  12. Huett, D. O., Morris, S. G., Smith, G., & Hunt, N. (2005). Water Research, 39, 3259–3272.

    Article  CAS  Google Scholar 

  13. Ikawa, M., Sasner, J. J., & Haney, J. F. (2001). Hydrobiologia, 443, 19–22.

    Article  CAS  Google Scholar 

  14. Jeong, H. J., Kim, J. S., Yoo, Y. D., Kim, S. T., Song, J. Y., Kim, T. H., et al. (2008). Harmful Algae, 7, 368–377.

    Article  Google Scholar 

  15. Ke, Z. X., Xie, P., Guo, L. G., Liu, Y. Q., & Yang, H. (2007). Aquaculture, 265, 127–138.

    Article  Google Scholar 

  16. Li, M., Wu, Y. J., Yu, Z. L., Sheng, G. P., & Yu, H. Q. (2007). Water Research, 41, 3152–3158.

    Article  CAS  Google Scholar 

  17. Marazioti, C., Kornaros, M., & Lyberatos, G. (2003). Water Research, 37, 1239–1251.

    Article  CAS  Google Scholar 

  18. Oberholster, P. J., Botha, A. M., & Ashton, P. J. (2009). Ecotoxicology, 18, 34–46.

    Article  CAS  Google Scholar 

  19. Pitois, S., Jackson, M. H., & Wood, B. J. B. (2001). Journal of Environmental Health, 64, 25–32.

    CAS  Google Scholar 

  20. Qin, B. Q., Yang, L. Y., Chen, F. Z., Zhu, G. W., Zhang, L., & Chen, Y. Y. (2006). Chinese Science Bulletin, 51, 2401–2412.

    Article  CAS  Google Scholar 

  21. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Journal of General Microbiology, 111, 1–61.

    Article  Google Scholar 

  22. Singhal, V., & Rai, J. P. N. (2003). Bioresource Technology, 86, 221–225.

    Article  CAS  Google Scholar 

  23. Smith, V. H., Tilman, G. D., & Nekola, J. C. (1999). Environmental Pollution, 100, 179–196.

    Article  CAS  Google Scholar 

  24. Sondergaard, M., Liboriussen, L., Pedersen, A. R., & Jeppesen, E. (2008). Ecosystems, 11, 1291–1305.

    Article  CAS  Google Scholar 

  25. Song, L. R., Chen, W., Peng, L., Wan, N., Gan, N. Q., & Zhang, X. M. (2007). Water Research, 41, 2853–2864.

    Article  CAS  Google Scholar 

  26. Tucker, S., & Pollard, P. (2005). Applied and Environmental Microbiology, 71, 629–635.

    Article  CAS  Google Scholar 

  27. Tang, X. Q., Wu, M., Yang, W. J., Yin, W., Jin, F., Ye, M., et al. (2012). Water, Air, and Soil Pollution, 223, 723–737.

    Article  CAS  Google Scholar 

  28. Watanabe, T., Masaki, K., Iwashita, K., Fujii, T., & Iefuji, H. (2009). Bioresource Technology, 100, 1781–1785.

    Article  CAS  Google Scholar 

  29. Watanabe, T., Ozaki, N., Iwashita, K., Fujii, T., & Iefuji, H. (2008). Applied Microbiology and Biotechnology, 80, 331–338.

    Article  CAS  Google Scholar 

  30. White, S. H., Duivenvoorden, L. J., & Fabbro, L. D. (2005). Hydrobiologia, 548, 117–126.

    Article  Google Scholar 

  31. Wicks, R. J., & Thiel, P. G. (1990). Environmental Science & Technology, 24, 1413–1418.

    Article  CAS  Google Scholar 

  32. Yang, X. E., Wu, X., Hao, H. L., & He, Z. L. (2008). Journal of Zhejiang University. Science. B, 9, 197–209.

    Article  CAS  Google Scholar 

  33. Yoshida, T., Takashima, Y., Tomaru, Y., Shirai, Y., Takao, Y., Hiroishi, S., et al. (2006). Applied and Environmental Microbiology, 72, 1239–1247.

    Article  CAS  Google Scholar 

  34. Zhang, X., Hu, H. Y., Men, Y. J., Yang, J., & Christoffersen, K. (2009). Water Research, 43, 2953–2960.

    Article  CAS  Google Scholar 

  35. Zhu, L., Ding, W., Feng, L. J., Kong, Y., Xu, J., & Xu, X. Y. (2012). Bioresource Technology, 108, 1–7.

    Article  CAS  Google Scholar 

  36. Zohary, T. (1985). Journal of Plankton Research, 7, 399–409.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by a grant from the Science and Technology R & D Program of Wuhan, China (No. 200960223065 and No. 201120637175-4). We would like to thank Dr. Nathan Moore (Department of Geography, Michigan State University) for the help of checking English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Miao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, Y., Xu, X., Zhu, L. et al. Control of the Harmful Alga Microcystis aeruginosa and Absorption of Nitrogen and Phosphorus by Candida utilis . Appl Biochem Biotechnol 169, 88–99 (2013). https://doi.org/10.1007/s12010-012-9946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9946-7

Keywords

Navigation