Skip to main content
Log in

New Tools for Exploring “Old Friends—Microbial Lipases”

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fat-splitting enzymes (lipases), due to their natural, industrial, and medical relevance, attract enough attention as fats do in our lives. Starting from the paper that we write, cheese and oil that we consume, detergent that we use to remove oil stains, biodiesel that we use as transportation fuel, to the enantiopure drugs that we use in therapeutics, all these applications are facilitated directly or indirectly by lipases. Due to their uniqueness, versatility, and dexterity, decades of research work have been carried out on microbial lipases. The hunt for novel lipases and strategies to improve them continues unabated as evidenced by new families of microbial lipases that are still being discovered mostly by metagenomic approaches. A separate database for true lipases termed LIPABASE has been created recently which provides taxonomic, structural, biochemical information about true lipases from various species. The present review attempts to summarize new approaches that are employed in various aspects of microbial lipase research, viz., screening, isolation, production, purification, improvement by protein engineering, and surface display. Finally, novel applications facilitated by microbial lipases are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ferrato, F., Carriere, F., Sarda, L., & Verger, R. (1997). A critical reevaluation of the phenomenon of interfacial activation. Methods in Enzymology, 286, 327–347.

    CAS  Google Scholar 

  2. Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., et al. (1992). The alpha/beta hydrolase fold. Protein Engineering, 5, 197–211.

    CAS  Google Scholar 

  3. Svendsen, A. (2000). Lipase protein engineering. Biochimica et Biophysica Acta, 1543, 223–238.

    CAS  Google Scholar 

  4. Brzozowski, A. M., Derewenda, U., Derewenda, Z. S., Dodson, G. G., Lawson, D. M., et al. (1991). A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature, 351, 491–494.

    CAS  Google Scholar 

  5. Jaeger, K. E., & Reetz, M. T. (1998). Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology, 16, 396–403.

    CAS  Google Scholar 

  6. Patton, J. S., & Carey, M. C. (1979). Watching fat digestion. Science, 204, 145–148.

    CAS  Google Scholar 

  7. Brockman, H. L., Law, J. H., & Kezdy, F. J. (1973). Catalysis by adsorbed enzymes. The hydrolysis of tripropionin by pancreatic lipase adsorbed to siliconized glass beads. Journal of Biological Chemistry, 248, 4965–4970.

    CAS  Google Scholar 

  8. Panaitov, I., & Verger, R. (2000). In A. Baszkin & W. Norde (Eds.), Physical chemistry of biological interfaces (pp. 359–400). New York: Marcel Dekker.

    Google Scholar 

  9. Reis, P., Holmberg, K., Watzke, H., Leser, M. E., & Miller, R. (2009). Lipases at interfaces: a review. Advances in Colloid and Interface Science, 147–148, 237–250.

    Google Scholar 

  10. Reis, P., Holmberg, K., Miller, R., Kragel, J., Grigoriev, D. O., et al. (2008). Competition between lipases and monoglycerides at interfaces. Langmuir, 24, 7400–7407.

    CAS  Google Scholar 

  11. Reis, P., Witula, T., & Holmberg, K. (2008). Mesoporous materials as host for an entrapped enzyme. Microporous and Mesoporous Materials, 110, 355–362.

    CAS  Google Scholar 

  12. Reis, P., Miller, R., Kragel, J., Leser, M., Fainerman, V. B., et al. (2008). Lipases at interfaces: unique interfacial properties as globular proteins. Langmuir, 24, 6812–6819.

    CAS  Google Scholar 

  13. Reis, P., Miller, R., Leser, M., Watzke, H., Fainerman, V. B., et al. (2008). Adsorption of polar lipids at the water-oil interface. Langmuir, 24, 5781–5786.

    CAS  Google Scholar 

  14. Akbari, N., Daneshjoo, S., Akbari, J., & Khajeh, K. (2011). Isolation, characterization, and catalytic properties of a novel lipase which is activated in ionic liquids and organic solvents. Applied Biochemistry and Biotechnology, 165, 785–794.

    CAS  Google Scholar 

  15. Idris, A., & Bukhari, A. (2012). Immobilized Candida antarctica lipase B: hydration, stripping off and application in ring opening polyester synthesis. Biotechnology Advances, 30, 550–563.

    CAS  Google Scholar 

  16. Ou, G., He, B., & Yuan, Y. (2011). Lipases are soluble and active in glycerol carbonate as a novel biosolvent. Enzyme and Microbial Technology, 49, 167–170.

    CAS  Google Scholar 

  17. Fischer, F., Mutschler, J., & Zufferey, D. (2011). Enzyme catalysis with small ionic liquid quantities. Journal of Industrial Microbiology and Biotechnology, 38, 477–487.

    CAS  Google Scholar 

  18. Kaar, J. L. (2011). Lipase activation and stabilization in room-temperature ionic liquids. Methods in Molecular Biology, 679, 25–35.

    CAS  Google Scholar 

  19. Willerding, A. L., de Oliveira, L. A., Moreira, F. W., Germano, M. G., & Chagas, A. F., Jr. (2011). Lipase activity among bacteria isolated from Amazonian soils. Enzyme Res, 2011, 720194.

    Google Scholar 

  20. Morohoshi, T., Oikawa, M., Sato, S., Kikuchi, N., Kato, N., et al. (2011). Isolation and characterization of novel lipases from a metagenomic library of the microbial community in the pitcher fluid of the carnivorous plant Nepenthes hybrida. Journal of Bioscience and Bioengineering, 112, 315–320.

    CAS  Google Scholar 

  21. Sarda, L., & Desnuelle, P. (1958). Actions of pancreatic lipase on esters in emulsions. Biochimica et Biophysica Acta, 30, 513–521.

    CAS  Google Scholar 

  22. Jaeger, K. E., Ransac, S., Dijkstra, B. W., Colson, C., van Heuvel, M., et al. (1994). Bacterial lipases. FEMS Microbiology Reviews, 15, 29–63.

    CAS  Google Scholar 

  23. Ali, Y. B., Verger, R., & Abousalham, A. (2012). Lipases or esterases: does it really matter? Toward a new bio-physico-chemical classification. Methods in Molecular Biology, 861, 31–51.

    Google Scholar 

  24. Messaoudi, A., Belguith, H., Ghram, I., & Hamida, J. B. (2011). LIPABASE: a database for ‘true’ lipase family enzymes. International Journal of Bioinformatics Research and Applications, 7, 390–401.

    CAS  Google Scholar 

  25. Widmann, M., Juhl, P. B., & Pleiss, J. (2010). Structural classification by the lipase engineering database: a case study of Candida antarctica lipase A. BMC Genomics, 11, 123.

    Google Scholar 

  26. Lotti, M., & Alberghina, L. (2007). In J. Polaina & A. P. Maccabe (Eds.), Industrial enzymes (pp. 263–281). New York: Springer.

    Google Scholar 

  27. Brady, L., Brzozowski, A. M., Derewenda, Z. S., Dodson, E., Dodson, G., et al. (1990). A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature, 343, 767–770.

    CAS  Google Scholar 

  28. Van Pouderoyen, G., Eggert, T., Jaeger, K. E., & Dijkstra, B. W. (2001). The crystal structure of Bacillus subtilis lipase: a minimal alpha/beta hydrolase fold enzyme. Journal of Molecular Biology, 309, 215–226.

    Google Scholar 

  29. Derewenda, Z. S., Derewenda, U., & Dodson, G. G. (1992). The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 A resolution. Journal of Molecular Biology, 227, 818–839.

    CAS  Google Scholar 

  30. Brocca, S., Secundo, F., Ossola, M., Alberghina, L., Carrea, G., et al. (2003). Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes. Protein Science, 12, 2312–2319.

    CAS  Google Scholar 

  31. Bassegoda, A., Pastor, F. I., & Diaz, P. (2012). Rhodococcus sp. strain CR-53 LipR, the first member of a new bacterial lipase family (family X) displaying an unusual Y-type oxyanion hole, similar to the Candida antarctica lipase clan. Applied and Environmental Microbiology, 78, 1724–1732.

    CAS  Google Scholar 

  32. Lou, Z., Li, M., Sun, Y., Liu, Y., Liu, Z., et al. (2010). Crystal structure of a secreted lipase from Gibberella zeae reveals a novel “double-lock” mechanism. Protein & Cell, 1, 760–770.

    CAS  Google Scholar 

  33. Cherukuvada, S. L., Seshasayee, A. S., Raghunathan, K., Anishetty, S., & Pennathur, G. (2005). Evidence of a double-lid movement in Pseudomonas aeruginosa lipase: insights from molecular dynamics simulations. PLoS Computational Biology, 1, e28.

    Google Scholar 

  34. Xu, T., Liu, L., Hou, S., Xu, J., Yang, B., et al. (2012). Crystal structure of a mono- and diacylglycerol lipase from Malassezia globosa reveals a novel lid conformation and insights into the substrate specificity. Journal of Structural Biology, 178, 363–369.

    CAS  Google Scholar 

  35. Mancheno, J. M., Pernas, M. A., Martinez, M. J., Ochoa, B., Rua, M. L., et al. (2003). Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97A resolution. Journal of Molecular Biology, 332, 1059–1069.

    CAS  Google Scholar 

  36. Akoh, C. C., Lee, G. C., & Shaw, J. F. (2004). Protein engineering and applications of Candida rugosa lipase isoforms. Lipids, 39, 513–526.

    CAS  Google Scholar 

  37. Piamtongkam, R., Duquesne, S., Bordes, F., Barbe, S., Andre, I., et al. (2011). Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Biotechnology and Bioengineering, 108, 1749–1756.

    CAS  Google Scholar 

  38. Pleiss, J., Scheib, H., & Schmid, R. D. (2000). The His gap motif in microbial lipases: a determinant of stereoselectivity toward triacylglycerols and analogs. Biochimie, 82, 1043–1052.

    CAS  Google Scholar 

  39. Mala, J. G., & Takeuchi, S. (2008). Understanding structural features of microbial lipases—an overview. Analytical Chemistry Insights, 3, 9–19.

    CAS  Google Scholar 

  40. Mukherjee, K. D. (1994). Plant lipases and their application in lipid biotransformations. Progress in Lipid Research, 33, 165–174.

    CAS  Google Scholar 

  41. Barros, M., Fleuri, L. F., & Macedo, G. A. (2010). Seed lipases sources applications and properties—a review. Brazilian Journal of Chemical Engineering, 27, 15–29.

    CAS  Google Scholar 

  42. Dominguez de Maria, P., Sinisterra, J. V., Tsai, S. W., & Alcantara, A. R. (2006). Carica papaya lipase (CPL): an emerging and versatile biocatalyst. Biotechnology Advances, 24, 493–499.

    CAS  Google Scholar 

  43. Abdelkafi, S., Barouh, N., Fouquet, B., Fendri, I., Pina, M., et al. (2011). Carica papaya lipase: a naturally immobilized enzyme with interesting biochemical properties. Plant Foods for Human Nutrition, 66, 34–40.

    CAS  Google Scholar 

  44. Rivera, I., Mateos-Diaz, J. C., & Sandoval, G. (2012). Plant lipases: partial purification of Carica papaya lipase. Methods in Molecular Biology, 861, 115–122.

    CAS  Google Scholar 

  45. Wong, H., & Schotz, M. C. (2002). The lipase gene family. Journal of Lipid Research, 43, 993–999.

    CAS  Google Scholar 

  46. Hui, D. Y., & Howles, P. N. (2002). Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. Journal of Lipid Research, 43, 2017–2030.

    CAS  Google Scholar 

  47. Kurtovic, I., Marshall, S. N., Zhao, X., & Simpson, B. K. (2009). Lipases from mammals and fishes. Reviews in Fisheries Science, 17, 18–40.

    CAS  Google Scholar 

  48. Amara, S., Fendri, A., Ben Salem, N., Gargouri, Y., & Miled, N. (2010). Snail hepatopancreatic lipase: a new member of invertebrates lipases' group. Applied Biochemistry and Biotechnology, 162, 942–952.

    CAS  Google Scholar 

  49. Zouari, N., Miled, N., Rouis, S., & Gargouri, Y. (2007). Scorpion digestive lipase: a member of a new invertebrate's lipase group presenting novel characteristics. Biochimie, 89, 403–409.

    CAS  Google Scholar 

  50. Cherif, S., Fendri, A., Miled, N., Trabelsi, H., Mejdoub, H., et al. (2007). Crab digestive lipase acting at high temperature: purification and biochemical characterization. Biochimie, 89, 1012–1018.

    CAS  Google Scholar 

  51. Vulfson, E. (1994). In P. Wooley & S. B. Peterson (Eds.), Lipases their structure biochemistry and applications (pp. 271–288). Cambridge: Cambridge University Press.

    Google Scholar 

  52. Saxena, R. K., Sheoran, A., Giri, B., & Davidson, W. S. (2003). Purification strategies for microbial lipases. Journal of Microbiological Methods, 52, 1–18.

    CAS  Google Scholar 

  53. Jaeger, K. E., Dijkstra, B. W., & Reetz, M. T. (1999). Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annual Review of Microbiology, 53, 315–351.

    CAS  Google Scholar 

  54. Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13, 390–397.

    CAS  Google Scholar 

  55. Pandey, A., Benjamin, S., Soccol, C. R., Nigam, P., Krieger, N., et al. (1999). The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry, 29(Pt 2), 119–131.

    CAS  Google Scholar 

  56. Singh, A. K., & Mukhopadhyay, M. (2012). Overview of fungal lipase: a review. Applied Biochemistry and Biotechnology, 166, 486–520.

    CAS  Google Scholar 

  57. Derewenda, U., Swenson, L., Green, R., Wei, Y., Yamaguchi, S., et al. (1994). Current progress in crystallographic studies of new lipases from filamentous fungi. Protein Engineering, 7, 551–557.

    CAS  Google Scholar 

  58. Houde, A., Kademi, A., & Leblanc, D. (2004). Lipases and their industrial applications: an overview. Applied Biochemistry and Biotechnology, 118, 155–170.

    CAS  Google Scholar 

  59. Gunasekaran, V., & Das, D. (2005). Lipase fermentation progress and prospects. Indian Journal of Biotechnology, 4, 437–445.

    CAS  Google Scholar 

  60. Cardenas, F., de Castro, M. S., Sanchez-Montero, J. M., Sinisterra, J. V., Valmaseda, M., et al. (2001). Novel microbial lipases: catalytic activity in reactions in organic media. Enzyme and Microbial Technology, 28, 145–154.

    CAS  Google Scholar 

  61. Ghosh, P. K., Saxena, R. K., Gupta, R., Yadav, R. P., & Davidson, S. (1996). Microbial lipases: productions and applications. Science Progress, 79, 119–157.

    CAS  Google Scholar 

  62. Singh, A. K., & Mukhopadhyay, M. (2012). Overview of fungal lipase: a review. Applied Biochemistry and Biotechnology, 166, 486–520.

    CAS  Google Scholar 

  63. Gandhi, N. N. (1997). Applications of lipase. Journal of the American Oil Chemists' Society, 74, 621–634.

    CAS  Google Scholar 

  64. Lin, E.-S., & Ko, H.-C. (2005). Glucose stimulates production of the alkaline-thermostable lipase of the edible basidiomycete Antrodia cinnamomea. Enzyme and Microbial Technology, 37, 261–265.

    CAS  Google Scholar 

  65. Gutarra, M. L., Godoy, M. G., Maugeri, F., Rodrigues, M. I., Freire, D. M., et al. (2009). Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bioresource Technology, 100, 5249–5254.

    CAS  Google Scholar 

  66. Velasco-Lozano, S., Volke-Sepulveda, T., & Favela-Torres, E. (2012). Lipases production by solid-state fermentation: the case of Rhizopus homothallicus in perlite. Methods in Molecular Biology, 861, 227–237.

    CAS  Google Scholar 

  67. Gutarra, M. L., de Godoy, M. G., Silva Jdo, N., Guedes, I. A., Lins, U., et al. (2009). Lipase production and Penicillium simplicissimum morphology in solid-state and submerged fermentations. Biotechnology Journal, 4, 1450–1459.

    CAS  Google Scholar 

  68. Mala, J. G., Edwinoliver, N. G., Kamini, N. R., & Puvanakrishnan, R. (2007). Mixed substrate solid state fermentation for production and extraction of lipase from Aspergillus niger MTCC 2594. Journal of General and Applied Microbiology, 53, 247–253.

    CAS  Google Scholar 

  69. Maheshwari, R., Bharadwaj, G., & Bhat, M. K. (2000). Thermophilic fungi: their physiology and enzymes. Microbiology and Molecular Biology Reviews, 64, 461–488.

    CAS  Google Scholar 

  70. Saisubramanian, N., Edwinoliver, N. G., Nandakumar, N., Kamini, N. R., & Puvanakrishnan, R. (2006). Efficacy of lipase from Aspergillus niger as an additive in detergent formulations: a statistical approach. Journal of Industrial Microbiology and Biotechnology, 33, 669–676.

    CAS  Google Scholar 

  71. Contesini, F., Lopes, D., Macedo, G., Nascimento, M., & Carvalho, P. (2010). Aspergillus sp. lipase: potential biocatalyst for industrial use. Journal of Molecular Catalysis B: Enzymatic, 67, 163–171.

    CAS  Google Scholar 

  72. Dominguez de Maria, P., Sanchez-Montero, J. M., Sinisterra, J. V., & Alcantara, A. R. (2006). Understanding Candida rugosa lipases: an overview. Biotechnology Advances, 24, 180–196.

    CAS  Google Scholar 

  73. Liou, Y.-C., Marangoni, A. G., & Yada, R. Y. (1998). Aggregation behavior of Candida rugosa lipase. Food Research International, 31, 243–248.

    CAS  Google Scholar 

  74. de Maria, P. D., Sanchez-Montero, J. M., Alcantara, A. R., Valero, F., & Sinisterra, J. V. (2005). Rational strategy for the production of new crude lipases from Candida rugosa. Biotechnology Letters, 27, 499–503.

    Google Scholar 

  75. Lopez, N., Pernas, M. A., Pastrana, L. M., Sanchez, A., Valero, F., et al. (2004). Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. influence of the isoenzymatic profile on the lipase performance in organic media. Biotechnology Progress, 20, 65–73.

    CAS  Google Scholar 

  76. Benjamin, S., & Pandey, A. (1998). Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast, 14, 1069–1087.

    CAS  Google Scholar 

  77. Vakhlu, J., Kour, A. (2006). Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electronic Journal of Biotechnology, 9.

  78. Fickers, P., Marty, A., & Nicaud, J. M. (2011). The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnology Advances, 29, 632–644.

    CAS  Google Scholar 

  79. Lee, K. H., Park, C. H., & Lee, E. Y. (2010). Biosynthesis of glycerol carbonate from glycerol by lipase in dimethyl carbonate as the solvent. Bioprocess and Biosystems Engineering, 33, 1059–1065.

    Google Scholar 

  80. Neta, N. S., Peres, A. M., Teixeira, J. A., & Rodrigues, L. R. (2011). Maximization of fructose esters synthesis by response surface methodology. New Biotechnology, 28, 349–355.

    CAS  Google Scholar 

  81. Kirk, O., & Christensen, M. W. (2002). Lipases from Candida antarctica: unique biocatalysts from a unique origin. Organic Process Research & Development, 6, 446–451.

    CAS  Google Scholar 

  82. Goncalves, C., Lopes, M., Ferreira, J. P., & Belo, I. (2009). Biological treatment of olive mill wastewater by non-conventional yeasts. Bioresource Technology, 100, 3759–3763.

    CAS  Google Scholar 

  83. Holmquist, M. (1998). Insights into the molecular basis for fatty acyl specificities of lipases from Geotrichum candidum and Candida rugosa. Chemistry and Physics of Lipids, 93, 57–66.

    CAS  Google Scholar 

  84. Ciafardini, G., Zullo, B. A., Cioccia, G., & Iride, A. (2006). Lipolytic activity of Williopsis californica and Saccharomyces cerevisiae in extra virgin olive oil. International Journal of Food Microbiology, 107, 27–32.

    CAS  Google Scholar 

  85. Deive, F. J., Costas, M., & Longo, M. A. (2003). Production of a thermostable extracellular lipase by Kluyveromyces marxianus. Biotechnology Letters, 25, 1403–1406.

    CAS  Google Scholar 

  86. Bussamara, R., Fuentefria, A. M., de Oliveira, E. S., Broetto, L., Simcikova, M., et al. (2010). Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation. Bioresource Technology, 101, 268–275.

    CAS  Google Scholar 

  87. Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763–781.

    CAS  Google Scholar 

  88. El Khattabi, M., Ockhuijsen, C., Bitter, W., Jaeger, K. E., & Tommassen, J. (1999). Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor. Molecular and General Genetics, 261, 770–776.

    CAS  Google Scholar 

  89. Arpigny, J. L., & Jaeger, K. E. (1999). Bacterial lipolytic enzymes: classification and properties. Biochemical Journal, 343(Pt 1), 177–183.

    CAS  Google Scholar 

  90. Rosenau, F., & Jaeger, K. (2000). Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie, 82, 1023–1032.

    CAS  Google Scholar 

  91. Rosenstein, R., & Gotz, F. (2000). Staphylococcal lipases: biochemical and molecular characterization. Biochimie, 82, 1005–1014.

    CAS  Google Scholar 

  92. Snellman, E. A., & Colwell, R. R. (2004). Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential. Journal of Industrial Microbiology and Biotechnology, 31, 391–400.

    CAS  Google Scholar 

  93. Angkawidjaja, C., & Kanaya, S. (2006). Family I.3 lipase: bacterial lipases secreted by the type I secretion system. Cellular and Molecular Life Sciences, 63, 2804–2817.

    CAS  Google Scholar 

  94. Guncheva, M., & Zhiryakova, D. (2011). Catalytic properties and potential applications of Bacillus lipases. Journal of Molecular Catalysis B: Enzymatic, 68, 1–21.

    CAS  Google Scholar 

  95. Rosenau, F., Tommassen, J., & Jaeger, K. E. (2004). Lipase-specific foldases. Chembiochem, 5, 152–161.

    CAS  Google Scholar 

  96. Reetz, M. T., & Jaeger, K. E. (1998). Overexpression, immobilization and biotechnological application of Pseudomonas lipases. Chemistry and Physics of Lipids, 93, 3–14.

    CAS  Google Scholar 

  97. Horchani, H., Aissa, I., Ouertani, S., Zarai, Z., Gargouri, Y., & Sayari, A. (2012). Staphylococcal lipases: biotechnological applications. Journal of Molecular Catalysis B: Enzymatic, 76, 125–132.

    CAS  Google Scholar 

  98. Cherif, S., Mnif, S., Hadrich, F., Abdelkafi, S., & Sayadi, S. (2011). A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids in Health and Disease, 10, 221.

    CAS  Google Scholar 

  99. Han, S. J., Back, J. H., Yoon, M. Y., Shin, P. K., Cheong, C. S., et al. (2003). Expression and characterization of a novel enantioselective lipase from Acinetobacter species SY-01. Biochimie, 85, 501–510.

    CAS  Google Scholar 

  100. Martinez, D. A., & Nudel, B. C. (2002). The improvement of lipase secretion and stability by addition of inert compounds into Acinetobacter calcoaceticus cultures. Canadian Journal of Microbiology, 48, 1056–1061.

    CAS  Google Scholar 

  101. Wang, H., Zhang, J., Wang, X., Qi, W., & Dai, Y. (2012). Genome shuffling improves production of the low-temperature alkalophilic lipase by Acinetobacter johnsonii. Biotechnology Letters, 34, 145–151.

    Google Scholar 

  102. Khoramnia, A., Ebrahimpour, A., Beh, B.K., & Lai, O.M. (2011). Production of a solvent, detergent, and thermotolerant lipase by a newly isolated Acinetobacter sp. in submerged and solid-state fermentations. Journal of Biomedicine and Biotechnology, Article ID 702179. doi:10.1155/2011/702179.

  103. Ahmed, E. H., Raghavendra, T., & Madamwar, D. (2010). An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis. Bioresource Technology, 101, 3628–3634.

    CAS  Google Scholar 

  104. Snellman, E. A., & Colwell, R. R. (2008). Transesterification activity of a novel lipase from Acinetobacter venetianus RAG-1. Antonie Leeuwenhoek, 94, 621–625.

    CAS  Google Scholar 

  105. Saisubramanian, N., Sivasubramanian, S., Nandakumar, N., Indirakumar, B., Chaudhary, N. A., et al. (2008). Two step purification of Acinetobacter sp. lipase and its evaluation as a detergent additive at low temperatures. Applied Biochemistry and Biotechnology, 150, 139–156.

    CAS  Google Scholar 

  106. Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: a review. Bioresource Technology, 89, 17–34.

    CAS  Google Scholar 

  107. Kittikun, H., Prasertsan, P., Zimmermann, W., Seesuriyachan, P., & Chaiyaso, T. (2012). Sugar ester synthesis by thermostable lipase from Streptomyces thermocarboxydus ME168. Applied Biochemistry and Biotechnology, 166, 1969–1982.

    Google Scholar 

  108. Faoro, H., Glogauer, A., Couto, G. H., de Souza, E. M., Rigo, L. U., et al. (2012). Characterization of a new Acidobacteria-derived moderately thermostable lipase from a Brazilian Atlantic Forest soil metagenome. FEMS Microbiology Ecology, 81, 386–394.

    CAS  Google Scholar 

  109. Ali, M. S., Yun, C. C., Chor, A. L., Rahman, R. N., Basri, M., et al. (2012). Purification and characterisation of an F16L mutant of a thermostable lipase. The Protein Journal, 31, 229–237.

    CAS  Google Scholar 

  110. Cordenons, A., Gonzalez, R., Kok, R., Hellingwerf, K. J., & Nudel, C. (1996). Effect of nitrogen sources on the regulation of extracellular lipase production in Acinetobacter calcoaceticus strains. Biotechnology Letters, 18, 633–638.

    CAS  Google Scholar 

  111. Ahmad, S., Kamal, M. Z., Sankaranarayanan, R., & Rao, N. M. (2008). Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight. Journal of Molecular Biology, 381, 324–340.

    CAS  Google Scholar 

  112. Le, Q. A., Joo, J. C., Yoo, Y. J., & Kim, Y. H. (2012). Development of thermostable Candida antarctica lipase B through novel in silico design of disulfide bridge. Biotechnology and Bioengineering, 109, 867–876.

    CAS  Google Scholar 

  113. Sharma, P. K., Kumar, R., Mohammad, O., Singh, R., & Kaur, J. (2012). Engineering of a metagenome derived lipase toward thermal tolerance: effect of asparagine to lysine mutation on the protein surface. Gene, 491, 264–271.

    CAS  Google Scholar 

  114. Chakravorty, D., Parameswaran, S., Dubey, V. K., & Patra, S. (2011). In silico characterization of thermostable lipases. Extremophiles, 15, 89–103.

    CAS  Google Scholar 

  115. Joseph, B., Ramteke, P. W., & Thomas, G. (2008). Cold active microbial lipases: Some hot issues and recent developments. Biotechnology Advances, 26, 457–470.

    CAS  Google Scholar 

  116. Rashid, N., Shimada, Y., Ezaki, S., Atomi, H., & Imanaka, T. (2001). Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Applied and Environmental Microbiology, 67, 4064–4069.

    CAS  Google Scholar 

  117. Kim, H. R., Kim, I. H., Hou, C. T., Kwon, K. I., & Shin, B. S. (2010). Production of a novel cold-active lipase from Pichia lynferdii Y-7723. Journal of Agricultural and Food Chemistry, 58, 1322–1326.

    CAS  Google Scholar 

  118. Jeon, J. H., Kim, J. T., Lee, H. S., Kim, S. J., Kang, S. G., et al. (2011). Novel lipolytic enzymes identified from metagenomic library of deep-sea sediment. Evidence-based Complementary and Alternative Medicine, 2011, 271419.

    Google Scholar 

  119. Gerday, C., Aittaleb, M., Arpigny, J. L., Baise, E., Chessa, J. P., et al. (1997). Psychrophilic enzymes: a thermodynamic challenge. Biochimica et Biophysica Acta, 1342, 119–131.

    CAS  Google Scholar 

  120. Alquati, C., De Gioia, L., Santarossa, G., Alberghina, L., Fantucci, P., et al. (2002). The cold-active lipase of Pseudomonas fragi. Heterologous expression, biochemical characterization and molecular modeling. European Journal of Biochemistry, 269, 3321–3328.

    CAS  Google Scholar 

  121. Suzuki, T., Nakayama, T., Kurihara, T., Nishino, T., & Esaki, N. (2001). Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain no. 6. Journal of Bioscience and Bioengineering, 92, 144–148.

    CAS  Google Scholar 

  122. Qi, W., Shao, J., Wang, H. K., Wei, Y. J., & Zhang, J. (2011). A novel low-temperature alkaline lipase from Acinetobacter johnsonii LP28 suitable for detergent formulation. Food Technology and Biotechnology, 49, 96–102.

    Google Scholar 

  123. Sidhu, P., Sharma, R., Soni, S. K., & Gupta, J. K. (1998). Production of extracellular alkaline lipase by a new thermophilic Bacillus sp. Folia Microbiologica, 43, 51–54.

    CAS  Google Scholar 

  124. Masahiro, M., Ehsan, A., Du, D., & Park, E. Y. (2009). Characterization and optimization of extracellular alkaline lipase production by Alcaligenes sp. using stearic acid as carbon source. Biotechnology and Bioprocess Engineering, 14, 193–201.

    Google Scholar 

  125. Gupta, N., Sahaib, V., & Gupta, R. (2007). Alkaline lipase from a novel strain Burkholderia multivorans: statistical medium optimization and production in a bioreactor. Process Biochemistry, 42, 518–526.

    CAS  Google Scholar 

  126. Lin, S. F., Chiou, C. M., Yeh, C. M., & Tsai, Y. C. (1996). Purification and partial characterization of an alkaline lipase from Pseudomonas pseudoalcaligenes F-111. Applied and Environmental Microbiology, 62, 1093–1095.

    CAS  Google Scholar 

  127. Joshi, G. K., Kumar, S., Tripathi, B. N., & Sharma, V. (2006). Production of alkaline lipase by Corynebacterium paurometabolum, MTCC 6841 isolated from Lake Naukuchiatal, Uttaranchal State, India. Current Microbiology, 52, 354–358.

    CAS  Google Scholar 

  128. Bouaziz, A., Horchani, H., Ben Salem, N., Gargouri, Y., & Sayari, A. (2011). Expression, purification of a novel alkaline Staphylococcus xylosus lipase acting at high temperature. Biochemical Eng J, 54, 93–102.

    CAS  Google Scholar 

  129. Mander, P., Cho, S. S., Simkhada, J. R., Choi, Y. H., Park, D. J., et al. (2012). An organic solvent-tolerant alkaline lipase from Streptomyces sp. CS268 and its application in biodiesel production. Biotechnology and Bioprocess Engineering, 17, 67–75.

    CAS  Google Scholar 

  130. Dai, D., & Xia, L. (2005). Enhanced production of Penicillium expansum PED-03 lipase through control of culture conditions and application of the crude enzyme in kinetic resolution of racemic allethrolone. Biotechnology Progress, 21, 1165–1168.

    CAS  Google Scholar 

  131. HueyMin, H., Liu, R., Jiang, X., Mou, H., Guan, H., Huang, H., et al. (2009). A novel low-temperature resistant alkaline lipase from a soda lake fungus strain Fusarium solani N4-2 for detergent formulation. Biochemical Engineering Journal, 46, 265–270.

    CAS  Google Scholar 

  132. Yoo, H. Y., Simkhada, J. R., Cho, S. S., Park, D. H., Kim, S. W., et al. (2011). A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresource Technology, 102, 6104–6111.

    CAS  Google Scholar 

  133. Salameh, M. A., & Wiegel, J. (2010). Effects of detergents on activity, thermostability and aggregation of two alkalithermophilic lipases from Thermosyntropha lipolytica. Open Biochemistry Journal, 4, 22–28.

    CAS  Google Scholar 

  134. Romdhane, I. B., Frikha, F., Maalej-Achouri, I., Gargouri, A., & Belghith, H. (2012). Gene cloning and molecular characterization of the Talaromyces thermophilus lipase catalyzed efficient hydrolysis and synthesis of esters. Gene, 494, 112–118.

    Google Scholar 

  135. Kim, E. Y., Oh, K. H., Lee, M. H., Kang, C. H., Oh, T. K., et al. (2009). Novel cold-adapted alkaline lipase from an intertidal flat metagenome and proposal for a new family of bacterial lipases. Applied and Environmental Microbiology, 75, 257–260.

    CAS  Google Scholar 

  136. Mahadik, N. D., Puntambekar, U. S., Bastawde, K. B., Khire, J. M., & Gokhale, D. V. (2002). Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochemistry, 38, 715–721.

    CAS  Google Scholar 

  137. Colin, V. L., Baigori, M. D., & Pera, L. M. (2010). Effect of environmental conditions on extracellular lipases production and fungal morphology from Aspergillus niger MYA 135. Journal of Basic Microbiology, 50, 52–58.

    CAS  Google Scholar 

  138. Doukyu, N., & Ogino, H. (2010). Organic solvent tolerant enzymes. Biochemical Engineering Journal, 48, 270–282.

    CAS  Google Scholar 

  139. Shu, Z. Y., Wu, J. G., Cheng, L. X., Chen, D., Jiang, Y. M., et al. (2012). Production and characteristics of the whole-cell lipase from organic solvent tolerant Burkholderia sp. ZYB002. Applied Biochemistry and Biotechnology, 166, 536–548.

    CAS  Google Scholar 

  140. Xu, J.-H., Zhao, L.-L., Zhao, J., Pan, J., & Wang, Z.-L. (2008). An organic solvent tolerant lipase from Serratia marcescens ECU1010: biochemical characterization and practical application. Journal of Biotechnology, 136, S51.

    Google Scholar 

  141. Grognux, J., & Reymond, J. L. (2004). Classifying enzymes from selectivity fingerprints. Chembiochem, 5, 826–831.

    CAS  Google Scholar 

  142. Jensen, R. G. (1983). Detection and determination of lipase (acylglycerol hydrolase) activity from various sources. Lipids, 18, 650–657.

    CAS  Google Scholar 

  143. Beisson, F., Tiss, A., Riviere, C., & Verger, R. (2000). Methods for lipase detection and assay: a critical review. European Journal of Lipid Science and Technology, 102, 133–153.

    CAS  Google Scholar 

  144. Gupta, R., Rathi, P., Gupta, N., & Bradoo, S. (2003). Lipase assays for conventional and molecular screening: an overview. Biotechnology and Applied Biochemistry, 37, 63–71.

    CAS  Google Scholar 

  145. Zhang, J.-H., Lin, Y., Sun, Y.-F., Ye, Y.-R., Zheng, S.-P., et al. (2012). High-throughput screening of B factor saturation mutated Rhizomucor miehei lipase thermostability based on synthetic reaction. Enzyme and Microbial Technology, 50, 325–330.

    CAS  Google Scholar 

  146. Saisuburamaniyan, N., Krithika, L., Dileena, K. P., Sivasubramanian, S., & Puvanakrishnan, R. (2004). Lipase assay in soils by copper soap colorimetry. Analytical Biochemistry, 330, 70–73.

    CAS  Google Scholar 

  147. Feist, A. M., Herrgard, M. J., Thiele, I., Reed, J. L., & Palsson, B. O. (2009). Reconstruction of biochemical networks in microorganisms. Nature Reviews Microbiology, 7, 129–143.

    CAS  Google Scholar 

  148. Steele, H. L., Jaeger, K. E., Daniel, R., & Streit, W. R. (2009). Advances in recovery of novel biocatalysts from metagenomes. Journal of Molecular Microbiology and Biotechnology, 16, 25–37.

    CAS  Google Scholar 

  149. Fernandez-Arrojo, L., Guazzaroni, M. E., Lopez-Cortes, N., Beloqui, A., & Ferrer, M. (2010). Metagenomic era for biocatalyst identification. Current Opinion in Biotechnology, 21, 725–733.

    CAS  Google Scholar 

  150. Lee, S. W., Won, K., Lim, H. K., Kim, J. C., Choi, G. J., et al. (2004). Screening for novel lipolytic enzymes from uncultured soil microorganisms. Applied Microbiology and Biotechnology, 65, 720–726.

    CAS  Google Scholar 

  151. Cieslinski, H., Bialkowskaa, A., Tkaczuk, K., Dlugolecka, A., Kur, J., et al. (2009). Identification and molecular modeling of a novel lipase from an Antarctic soil metagenomic library. Polish Journal of Microbiology, 58, 199–204.

    CAS  Google Scholar 

  152. Couto, G. H., Glogauer, A., Faoro, H., Chubatsu, L. S., Souza, E. M., et al. (2010). Isolation of a novel lipase from a metagenomic library derived from mangrove sediment from the south Brazilian coast. Genetics and Molecular Research, 9, 514–523.

    CAS  Google Scholar 

  153. Tuffin, M., Anderson, D., Heath, C., & Cowan, D. A. (2009). Metagenomic gene discovery: how far have we moved into novel sequence space? Biotechnology Journal, 4, 1671–1683.

    CAS  Google Scholar 

  154. Glogauer, A., Martini, V. P., Faoro, H., Couto, G. H., Muller-Santos, M., et al. (2011). Identification and characterization of a new true lipase isolated through metagenomic approach. Microbial Cell Factories, 10, 54.

    CAS  Google Scholar 

  155. Martini, V. P., Glogauer, A., Iulek, J., Souza, E. M., Pedrosa, F. O., et al. (2012). Crystallization and preliminary crystallographic analysis of LipC12, a true lipase isolated through a metagenomics approach. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 68, 175–177.

    CAS  Google Scholar 

  156. Simon, C., & Daniel, R. (2011). Metagenomic analyses: past and future trends. Applied and Environmental Microbiology, 77, 1153–1161.

    CAS  Google Scholar 

  157. Rao, L., Xue, Y., Zhou, C., Tao, J., Li, G., et al. (2011). A thermostable esterase from Thermoanaerobacter tengcongensis opening up a new family of bacterial lipolytic enzymes. Biochimica et Biophysica Acta, 1814, 1695–1702.

    CAS  Google Scholar 

  158. Nacke, H., Will, C., Herzog, S., Nowka, B., Engelhaupt, M., et al. (2011). Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories. FEMS Microbiology Ecology, 78, 188–201.

    CAS  Google Scholar 

  159. Vieites, J. M., Guazzaroni, M. E., Beloqui, A., Golyshin, P. N., & Ferrer, M. (2009). Metagenomics approaches in systems microbiology. FEMS Microbiology Reviews, 33, 236–255.

    CAS  Google Scholar 

  160. Kalyuzhnaya, M. G., Lapidus, A., Ivanova, N., Copeland, A. C., McHardy, A. C., et al. (2008). High-resolution metagenomics targets specific functional types in complex microbial communities. Nature Biotechnology, 26, 1029–1034.

    CAS  Google Scholar 

  161. Jehmlich, N., Schmidt, F., von Bergen, M., Richnow, H. H., & Vogt, C. (2008). Protein-based stable isotope probing (protein-SIP) reveals active species within anoxic mixed cultures. ISME Journal, 2, 1122–1133.

    CAS  Google Scholar 

  162. Bomar, L., Maltz, M., Colston, S., & Graf, J. (2011). Directed culturing of microorganisms using metatranscriptomics. MBio, 2(2), e00012-11. doi:10.1128/mBio.00012-11.

    Google Scholar 

  163. Uchiyama, T., & Miyazaki, M. (2009). Functional metagenomics for enzyme discovery: challenges of efficient screening. Current Opinion in Biotechnology, 20, 616–622.

    CAS  Google Scholar 

  164. Shangguan, J. J., Liu, Y. Q., Wang, F. J., Zhao, J., Fan, L. Q., et al. (2011). Expression and characterization of a novel lipase from Aspergillus fumigatus with high specific activity. Applied Biochemistry and Biotechnology, 165, 949–962.

    CAS  Google Scholar 

  165. Najjar, A., Robert, S., Guerin, C., Violet-Asther, M., & Carriere, F. (2011). Quantitative study of lipase secretion, extracellular lipolysis, and lipid storage in the yeast Yarrowia lipolytica grown in the presence of olive oil: analogies with lipolysis in humans. Applied Microbiology and Biotechnology, 89, 1947–1962.

    CAS  Google Scholar 

  166. Jermsuntiea, W., Aki, T., Toyoura, R., Iwashita, K., Kawamoto, S., et al. (2011). Purification and characterization of intracellular lipase from the polyunsaturated fatty acid-producing fungus Mortierella alliacea. New Biotechnology, 28, 158–164.

    CAS  Google Scholar 

  167. Ham, H. J., Rho, H. J., Shin, S. K., & Yoon, H. J. (2010). The TGL2 gene of Saccharomyces cerevisiae encodes an active acylglycerol lipase located in the mitochondria. Journal of Biological Chemistry, 285, 3005–3013.

    CAS  Google Scholar 

  168. Deive, F. J., Carvalho, E., Pastrana, L., Rua, M. L., Longo, M. A., et al. (2009). Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Bioresource Technology, 100, 3630–3637.

    CAS  Google Scholar 

  169. D'Annibale, A., Sermanni, G. G., Federici, F., & Petruccioli, M. (2006). Olive-mill wastewaters: a promising substrate for microbial lipase production. Bioresource Technology, 97, 1828–1833.

    Google Scholar 

  170. Dutta, S., & Ray, L. (2009). Production and characterization of an alkaline thermostable crude lipase from an isolated strain of Bacillus cereus C(7). Applied Biochemistry and Biotechnology, 159, 142–154.

    CAS  Google Scholar 

  171. Shariff, F. M., Leow, T. C., Mukred, A. D., Salleh, A. B., Basri, M., et al. (2007). Production of L2 lipase by Bacillus sp. strain L2: nutritional and physical factors. Journal of Basic Microbiology, 47, 406–412.

    CAS  Google Scholar 

  172. Chander, H., Bathish, V. K., Sannabhadti, S. S., & Srinivasan, R. A. (2006). Factors affecting lipase production in Aspergillus wentii. Journal of Food Science, 45, 598–600.

    Google Scholar 

  173. Joseph, B., Ramteke, P. W., & Kumar, P. A. (2006). Studies on the enhanced production of extracellular lipase by Staphylococcus epidermidis. Journal of General and Applied Microbiology, 52, 315–320.

    CAS  Google Scholar 

  174. Maia, M. M., Heasley, A., Camargo de Morais, M. M., Melo, E. H., Morais, M. A., Jr., et al. (2001). Effect of culture conditions on lipase production by Fusarium solani in batch fermentation. Bioresource Technology, 76, 23–27.

    CAS  Google Scholar 

  175. Ben Rebah, F., Frikha, F., Kamoun, W., Belbahri, L., Gargouri, Y., et al. (2008). Culture of Staphylococcus xylosus in fish processing by-product-based media for lipase production. Letters in Applied Microbiology, 47, 549–554.

    CAS  Google Scholar 

  176. Kambourova, M., Emanuilova, E., & Dimitrov, P. (1996). Influence of culture conditions on thermostable lipase production by a thermophilic alkalitolerant strain of Bacillus sp. Folia Microbiol (Praha), 41, 146–148.

    CAS  Google Scholar 

  177. Show, P. L., Tan, C. P., Shamsul Anuar, M., Ariff, A., Yusof, Y. A., et al. (2012). Extractive fermentation for improved production and recovery of lipase derived from Burkholderia cepacia using a thermoseparating polymer in aqueous two-phase systems. Bioresource Technology, 116, 226–233.

    CAS  Google Scholar 

  178. Fickers, P., Destain, J., & Thonart, P. (2009). Improvement of Yarrowia lipolytica lipase production by fed-batch fermentation. Journal of Basic Microbiology, 49, 212–215.

    CAS  Google Scholar 

  179. Montesinos, J. L., Dalmau, E., & Casas, C. (2003). Lipase production in continuous culture of Candida rugosa. J Chem Tech Biot, 78, 753–761.

    CAS  Google Scholar 

  180. Deive, F. J., Sanroman, M. A., & Longo, M. A. (2010). A comprehensive study of lipase production by Yarrowia lipolytica CECT 1240 (ATCC 18942): from shake flask to continuous bioreactor. Journal of Chemical Technology & Biotechnology, 85, 258–266.

    CAS  Google Scholar 

  181. Moftah, O. A., Grbavcic, S., Zuza, M., Lukovic, N., Bezbradica, D., et al. (2012). Adding value to the oil cake as a waste from oil processing industry: production of lipase and protease by Candida utilis in solid state fermentation. Applied Biochemistry and Biotechnology, 166, 348–364.

    CAS  Google Scholar 

  182. Lopez, E., Deive, F. J., Longo, M. A., & Sanroman, M. A. (2010). Strategies for utilisation of food-processing wastes to produce lipases in solid-state cultures of Rhizopus oryzae. Bioprocess and Biosystems Engineering, 33, 929–935.

    CAS  Google Scholar 

  183. Kempka, A. P., Lipke, N. L., da Luz Fontoura Pinheiro, T., Menoncin, S., Treichel, H., et al. (2008). Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess and Biosystems Engineering, 31, 119–125.

    CAS  Google Scholar 

  184. Kumar, S., Katiyar, N., Ingle, P., & Negi, S. (2011). Use of evolutionary operation (EVOP) factorial design technique to develop a bioprocess using grease waste as a substrate for lipase production. Bioresource Technology, 102, 4909–4912.

    CAS  Google Scholar 

  185. Edwinoliver, N. G., Thirunavukarasu, K., Naidu, R. B., Gowthaman, M. K., Kambe, T. N., et al. (2010). Scale up of a novel tri-substrate fermentation for enhanced production of Aspergillus niger lipase for tallow hydrolysis. Bioresource Technology, 101, 6791–6796.

    CAS  Google Scholar 

  186. Treichel, H., de Oliveria, D., Mazutti, M. A., Luccio, M. D., & Oliveira, J. V. (2010). A review on microbial lipases production. Food and Bioprocess Technology, 3, 182–196.

    CAS  Google Scholar 

  187. Shimada, Y., Sugihara, A., & Tominaga, Y. (1994). Microbial lipase: structure and production. Bioprocess Technology, 19, 359–371.

    CAS  Google Scholar 

  188. Resina, D., Maurer, M., Cos, O., Arnau, C., Carnicer, M., et al. (2009). Engineering of bottlenecks in Rhizopus oryzae lipase production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter. New Biotechnology, 25, 396–403.

    CAS  Google Scholar 

  189. Bas, D., & Boyaci, H. I. (2007). Modeling and optimization II: comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. Journal of Food Engineering, 78, 846–854.

    CAS  Google Scholar 

  190. Sifour, M., Zaghloul, T. I., Saeed, H. M., Berekaa, M. M., & Abdel-Fattah, Y. R. (2010). Enhanced production of lipase by the thermophilic Geobacillus stearothermophilus strain-5 using statistical experimental designs. New Biotechnology, 27, 330–336.

    CAS  Google Scholar 

  191. Olusesan, A. T., Azura, L. K., Abubakar, F., Mohamed, A. K., Radu, S., et al. (2011). Enhancement of thermostable lipase production by a genotypically identified extremophilic Bacillus subtilis NS 8 in a continuous bioreactor. Journal of Molecular Microbiology and Biotechnology, 20, 105–115.

    CAS  Google Scholar 

  192. Gupta, N., Mehra, G., & Gupta, R. (2004). A glycerol-inducible thermostable lipase from Bacillus sp.: medium optimization by a Plackett-Burman design and by response surface methodology. Canadian Journal of Microbiology, 50, 361–368.

    CAS  Google Scholar 

  193. Ebrahimpour, A., Abd Rahman, R. N., Ean Ch’ng, D. H., Basri, M., & Salleh, A. B. (2008). A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM. BMC Biotechnology, 8, 96.

    Google Scholar 

  194. Contesini, F. J., da Silva, V. C., Maciel, R. F., de Lima, R. J., Barros, F. F., et al. (2009). Response surface analysis for the production of an enantioselective lipase from Aspergillus niger by solid-state fermentation. Journal of Microbiology, 47, 563–571.

    CAS  Google Scholar 

  195. Chennupati, S., Potumarthi, R., Gopal Rao, M., Manga, P. L., Sridevi, M., et al. (2009). Multiple responses optimization and modeling of lipase production by Rhodotorula mucilaginosa MTCC-8737 using response surface methodology. Applied Biochemistry and Biotechnology, 159, 317–329.

    CAS  Google Scholar 

  196. Teng, Y., & Xu, Y. (2008). Culture condition improvement for whole-cell lipase production in submerged fermentation by Rhizopus chinensis using statistical method. Bioresource Technology, 99, 3900–3907.

    CAS  Google Scholar 

  197. Lan, D., Hou, S., Yang, N., Whiteley, C., Yang, B., et al. (2011). Optimal production and biochemical properties of a lipase from Candida albicans. International Journal of Molecular Sciences, 12, 7216–7237.

    CAS  Google Scholar 

  198. Rajendran, A., & Thangavelu, V. (2007). Optimization of medium composition for lipase production by Candida rugosa NCIM 3462 using response surface methodology. Canadian Journal of Microbiology, 53, 643–655.

    CAS  Google Scholar 

  199. Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence (p. 207). Cambridge: MIT Press.

    Google Scholar 

  200. Eberhart, R.C., Kennedy, J. (1995). A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium. Micro Machine and Human Science, Indianapolis, IN, pp. 39–43.

  201. Garlapati, V. K., Vundavilli, P. R., & Banerjee, R. (2010). Evaluation of lipase production by genetic algorithm and particle swarm optimization and their comparative study. Applied Biochemistry and Biotechnology, 162, 1350–1361.

    CAS  Google Scholar 

  202. Talukder, M. R., Susanto, D., Feng, G., Wu, J., Choi, W. J., et al. (2007). Improvement in extraction and catalytic activity of Mucor javanicus lipase by modification of AOT reverse micelle. Biotechnology Journal, 2, 1369–1374.

    CAS  Google Scholar 

  203. Yu, Y. C., Chu, Y., & Ji, J. Y. (2003). Study of the factors affecting the forward and back extraction of yeast-lipase and its activity by reverse micelles. Journal of Colloid and Interface Science, 267, 60–64.

    CAS  Google Scholar 

  204. Taipa, M. A., Aires-Barros, M. R., & Cabral, J. M. (1992). Purification of lipases. Journal of Biotechnology, 26, 111–142.

    CAS  Google Scholar 

  205. Yujun, W., Jian, X., Guangsheng, L., & Youyuan, D. (2008). Immobilization of lipase by ultrafiltration and cross-linking onto the polysulfone membrane surface. Bioresource Technology, 99, 2299–2303.

    Google Scholar 

  206. Aires-Barros, M. R., & Cabral, J. M. (1991). Selective separation and purification of two lipases from Chromobacterium viscosum using AOT reversed micelles. Biotechnology and Bioengineering, 38, 1302–1307.

    CAS  Google Scholar 

  207. Yao, H., Zhang, T., Xue, H., Tang, K., & Li, R. (2011). Biomimetic affinity purification of Candida antarctica lipase B. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 879, 3896–3900.

    CAS  Google Scholar 

  208. Juntachai, W., Oura, T., & Kajiwara, S. (2011). Purification and characterization of a secretory lipolytic enzyme, MgLIP2, from Malassezia globosa. Microbiology, 157, 3492–3499.

    CAS  Google Scholar 

  209. Sikdar, S. K., Cole, K. D., Stewart, R. M., Szlag, D. C., Todd, P., et al. (1991). Aqueous two-phase extraction in bioseparations: an assessment. Biotechnology (N. Y), 9, 254–256.

    Google Scholar 

  210. Gupta, R., Bradoo, S., & Saxena, R. K. (1999). Aqueous two-phase systems: an attractive technology for downstream processing of biomolecules. Current Science, 77, 520–523.

    CAS  Google Scholar 

  211. Srinivas, N. D., Barhate, R. S., & Raghavarao, K. S. M. S. (2002). Aqueous two-phase extraction in combination with ultrafiltration for downstream processing of Ipomoea peroxidase. Journal of Food Engineering, 54, 1–6.

    Google Scholar 

  212. Terstappen, G. C., Geerts, A. J., & Kula, M. R. (1992). The use of detergent-based aqueous two-phase systems for the isolation of extracellular proteins: purification of a lipase from Pseudomonas cepacia. Biotechnology and Applied Biochemistry, 16, 228–235.

    CAS  Google Scholar 

  213. Bompensieri, S., Mahler, G. F., Castaneda, N., Miranda, M. V., Cascone, O., et al. (1998). Rapid purification of a lipase from Acenitobacter calcoaceticus by temperature-induced aqueous two-phase systems. Biotechnology Techniques, 12, 611–613.

    CAS  Google Scholar 

  214. Barbosa, J. M., Souza, R. L., Fricks, A. T., Zanin, G. M., Soares, C. M., et al. (2011). Purification of lipase produced by a new source of Bacillus in submerged fermentation using an aqueous two-phase system. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 879, 3853–3858.

    CAS  Google Scholar 

  215. Volpato, G., Filice, M., de las Rivas, B., Rodrigues, R. C., Heck, J. X., et al. (2011). Purification, immobilization, and characterization of a specific lipase from Staphylococcus warneri EX17 by enzyme fractionating via adsorption on different hydrophobic supports. Biotechnology Progress, 27, 717–723.

    CAS  Google Scholar 

  216. Volpato, G., Filice, M., Ayub, M. A., Guisan, J. M., & Palomo, J. M. (2010). Single-step purification of different lipases from Staphylococcus warneri. Journal of Chromatography A, 1217, 73–478.

    Google Scholar 

  217. Ventura, S. P., Sousa, S. G., Freire, M. G., Serafim, L. S., Lima, A. S., et al. (2011). Design of ionic liquids for lipase purification. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 879, 2679–2687.

    CAS  Google Scholar 

  218. Levasseur, A., Gouret, P., Lesage-Meessen, L., Asther, M., Record, E., et al. (2006). Tracking the connection between evolutionary and functional shifts using the fungal lipase/feruloyl esterase A family. BMC Evolutionary Biology, 6, 92.

    Google Scholar 

  219. Takwa, M., Larsen, M. W., Hult, K., & Martinelle, M. (2011). Rational redesign of Candida antarctica lipase B for the ring opening polymerization of D,D-lactide. Chemical Communications (Cambridge), 47, 7392–7394.

    CAS  Google Scholar 

  220. Brundiek, H. B., Evitt, A. S., Kourist, R., & Bornscheuer, U. T. (2012). Creation of a lipase highly selective for trans fatty acids by protein engineering. Angewandte Chemie (International Ed. in English), 51, 412–414.

    CAS  Google Scholar 

  221. Gumulya, Y., & Reetz, M. T. (2011). Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways. ChemBioChem, 12, 2502–2510.

    CAS  Google Scholar 

  222. Kolling, D. J., Bertoldo, J. B., Brod, F. C., Vernal, J., Terenzi, H., et al. (2010). Biochemical and structural characterization of two site-directed mutants of Staphylococcus xylosus lipase. Molecular Biotechnology, 46, 168–175.

    CAS  Google Scholar 

  223. Reetz, M. T., & Carballeira, J. D. (2007). Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nature Protocols, 2, 891–903.

    CAS  Google Scholar 

  224. Wong, H., Davis, R. C., Hill, J. S., Yang, D., & Schotz, M. C. (1997). Lipase engineering: a window into structure-function relationships. Methods in Enzymology, 284, 171–184.

    CAS  Google Scholar 

  225. Alberghina, L. (Ed.). (2000). Protein engineering in industrial biotechnology. Reading: Harwood Academic Publishers. pp 376.

    Google Scholar 

  226. Acharya, P., Rajakumara, E., Sankaranarayanan, R., & Rao, N. M. (2004). Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase. Journal of Molecular Biology, 341, 1271–1281.

    CAS  Google Scholar 

  227. Reetz, M. T., Prasad, S., Carballeira, J. D., Gumulya, Y., & Bocola, M. (2010). Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods. Journal of the American Chemical Society, 132, 9144–9152.

    CAS  Google Scholar 

  228. Prasad, S., Bocola, M., & Reetz, M. T. (2011). Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis. Chemphyschem, 12, 1550–1557.

    CAS  Google Scholar 

  229. Park, C. G., Kwon, M. A., Song, J. K., & Kim, D. M. (2011). Cell-free synthesis and multifold screening of Candida antarctica lipase B (CalB) variants after combinatorial mutagenesis of hot spots. Biotechnology Progress, 27, 47–53.

    CAS  Google Scholar 

  230. Schmidt, M., & Bornscheuer, U. T. (2005). High-throughput assays for lipases and esterases. Biomolecular Engineering, 22, 51–56.

    CAS  Google Scholar 

  231. Sandström, A. G., Wikmark, Y., Engström, K., Nyhlén, J., & Bäckvall, J. E. (2012). Combinatorial reshaping of the Candida antarctica lipase A substrate pocket for enantioselectivity using an extremely condensed library. Proceedings of the National Academy of Sciences, 109, 78–83.

    Google Scholar 

  232. Shu, Z., Duan, M., Yang, J., Xu, L., & Yan, Y. (2009). Aspergillus niger lipase: heterologous expression in Pichia pastoris, molecular modeling prediction and the importance of the hinge domains at both sides of the lid domain to interfacial activation. Biotechnology Progress, 25, 409–416.

    CAS  Google Scholar 

  233. Shu, Z., Wu, J., Xue, L., Lin, R., Jiang, Y., et al. (2011). Construction of Aspergillus niger lipase mutants with oil-water interface independence. Enzyme and Microbial Technology, 48, 129–133.

    CAS  Google Scholar 

  234. Becker, S., Theile, S., Heppeler, N., Michalczyk, A., Wentzel, A., et al. (2005). A generic system for the Escherichia coli cell-surface display of lipolytic enzymes. FEBS Letters, 579, 1177–1182.

    CAS  Google Scholar 

  235. Lee, S. H., Choi, J. I., Han, M. J., Choi, J. H., & Lee, S. Y. (2005). Display of lipase on the cell surface of Escherichia coli using OprF as an anchor and its application to enantioselective resolution in organic solvent. Biotechnology and Bioengineering, 90, 223–230.

    CAS  Google Scholar 

  236. Jung, H. C., Kwon, S. J., & Pan, J. G. (2006). Display of a thermostable lipase on the surface of a solvent-resistant bacterium, Pseudomonas putida GM730, and its applications in whole-cell biocatalysis. BMC Biotechnology, 6, 23.

    Google Scholar 

  237. Kobayashi, G., Fujii, K., Serizawa, M., Yamamoto, H., & Sekiguchi, J. (2002). Simultaneous display of bacterial and fungal lipases on the cell surface of Bacillus subtilis. Journal of Bioscience and Bioengineering, 93, 15–19.

    CAS  Google Scholar 

  238. Mormeneo, M., Andres, I., Bofill, C., Diaz, P., & Zueco, J. (2008). Efficient secretion of Bacillus subtilis lipase A in Saccharomyces cerevisiae by translational fusion to the Pir4 cell wall protein. Applied Microbiology and Biotechnology, 80, 437–445.

    CAS  Google Scholar 

  239. Ueda, M., & Tanaka, A. (2000). Cell surface engineering of yeast: construction of arming yeast with biocatalyst. Journal of Bioscience and Bioengineering, 90, 125–136.

    CAS  Google Scholar 

  240. Kato, M., Fuchimoto, J., Tanino, T., Kondo, A., Fukuda, H., et al. (2007). Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipase B (mCALB) by a yeast molecular display system and its practical properties. Applied Microbiology and Biotechnology, 75, 549–555.

    CAS  Google Scholar 

  241. Tanino, T., Aoki, T., Chung, W. Y., Watanabe, Y., Ogino, C., et al. (2009). Improvement of a Candida antarctica lipase B-displaying yeast whole-cell biocatalyst and its application to the polyester synthesis reaction. Applied Microbiology and Biotechnology, 82, 59–66.

    CAS  Google Scholar 

  242. Liu, W., Zhao, H., Jia, B., Xu, L., & Yan, Y. (2010). Surface display of active lipase in Saccharomyces cerevisiae using Cwp2 as an anchor protein. Biotechnology Letters, 32, 255–260.

    CAS  Google Scholar 

  243. Liu, W. S., Pan, X. X., Jia, B., Zhao, H. Y., Xu, L., et al. (2010). Surface display of active lipases Lip7 and Lip8 from Yarrowia lipolytica on Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 88, 885–891.

    CAS  Google Scholar 

  244. Han, S. Y., Zhang, J. H., Han, Z. L., Zheng, S. P., & Lin, Y. (2011). Combination of site-directed mutagenesis and yeast surface display enhances Rhizomucor miehei lipase esterification activity in organic solvent. Biotechnology Letters, 33, 2431–2438.

    CAS  Google Scholar 

  245. Baek, J. H., Han, M. J., Lee, S. H., & Lee, S. Y. (2010). Enhanced display of lipase on the Escherichia coli cell surface, based on transcriptome analysis. Applied and Environmental Microbiology, 76, 971–973.

    CAS  Google Scholar 

  246. Ribeiro, B. D., de Castro, A. M., Coelho, M. A., & Freire, D. M. (2011). Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Research, 2011, 16.

    Google Scholar 

  247. Tan, T., Lu, J., Nie, K., Deng, L., & Wang, F. (2010). Biodiesel production with immobilized lipase: a review. Biotechnology Advances, 28, 628–634.

    CAS  Google Scholar 

  248. Bisen, P. S., Sanodiya, B. S., Thakur, G. S., Baghel, R. K., & Prasad, G. B. (2010). Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnology Letters, 32, 1019–1030.

    CAS  Google Scholar 

  249. Wang, X., Liu, X., Yan, X., Zhao, P., Ding, Y., et al. (2011). Enzyme-nanoporous gold biocomposite: excellent biocatalyst with improved biocatalytic performance and stability. PLoS One, 6, e24207.

    CAS  Google Scholar 

  250. Tzialla, A. A., Pavlidis, I. V., Felicissimo, M. P., Rudolf, P., Gournis, D., et al. (2010). Lipase immobilization on smectite nanoclays: characterization and application to the epoxidation of alpha-pinene. Bioresource Technology, 101, 1587–1594.

    CAS  Google Scholar 

  251. Rao, A., Bankar, A., Shinde, A., Ravi Kumar, A., Gosavi, S., et al. (2011). Phyto-inspired silica nanowires: characterization and application in lipase immobilization. ACS Applied Materials & Interfaces, 4, 871–877.

    Google Scholar 

  252. Baldessari, A., & Iglesias, L. E. (2012). Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides. Methods in Molecular Biology, 861, 457–469.

    CAS  Google Scholar 

  253. Gross, R. A., Kalra, B., & Kumar, A. (2001). Polyester and polycarbonate synthesis by in vitro enzyme catalysis. Applied Microbiology and Biotechnology, 55, 655–660.

    CAS  Google Scholar 

  254. Kim, D. Y., & Dordick, J. S. (2001). Combinatorial array-based enzymatic polyester synthesis. Biotechnology and Bioengineering, 76, 200–206.

    CAS  Google Scholar 

  255. Wang, H. Y., Zhou, Y. J., Wang, Z., Wang, N., Li, K., et al. (2011). Enzyme-catalyzed synthesis of a novel thermosensitive polyester with pendant ketoprofen. Macromolecular Bioscience, 11, 595–599.

    CAS  Google Scholar 

  256. Brust, B., Lecoufle, M., Tuaillon, E., Dedieu, L., Canaan, S., et al. (2011). Mycobacterium tuberculosis lipolytic enzymes as potential biomarkers for the diagnosis of active tuberculosis. PLoS One, 6, e25078.

    CAS  Google Scholar 

  257. Pinijsuwan, S., Shipovskov, S., Surareungchai, W., Ferapontova, E. E., & Gothelf, K. V. (2011). Development of a lipase-based optical assay for detection of DNA. Organic and Biomolecular Chemistry, 9, 6352–6356.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saisubramanian Nagarajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagarajan, S. New Tools for Exploring “Old Friends—Microbial Lipases”. Appl Biochem Biotechnol 168, 1163–1196 (2012). https://doi.org/10.1007/s12010-012-9849-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9849-7

Keywords

Navigation