Skip to main content
Log in

Development of Petri Net-Based Dynamic Model for Improved Production of Farnesyl Pyrophosphate by Integrating Mevalonate and Methylerythritol Phosphate Pathways in Yeast

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this case study, we designed a farnesyl pyrophosphate (FPP) biosynthetic network using hybrid functional Petri net with extension (HFPNe) which is derived from traditional Petri net theory and allows easy modeling with graphical approach of various types of entities in the networks together. Our main objective is to improve the production of FPP in yeast, which is further converted to amorphadiene (AD), a precursor of artemisinin (antimalarial drug). Natively, mevalonate (MEV) pathway is present in yeast. Methyl erythritol phosphate pathways (MEP) are present only in higher plant plastids and eubacteria, but not present in yeast. IPP and DAMP are common isomeric intermediate in these two pathways, which immediately yields FPP. By integrating these two pathways in yeast, we augmented the FPP synthesis approximately two folds higher (431.16 U/pt) than in MEV pathway alone (259.91 U/pt) by using HFPNe technique. Further enhanced FPP levels converted to AD by amorphadiene synthase gene yielding 436.5 U/pt of AD which approximately two folds higher compared to the AD (258.5 U/pt) synthesized by MEV pathway exclusively. Simulation and validation processes performed using these models are reliable with identified biological information and data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AD:

Amorphadiene

HFPNe:

Hybrid functional Petri net with extension

MEV:

Mevalonate

MEP:

Methylerithritol 4-phosphate

FPP:

Farnesyl pyrophosphate

IPP:

Isopentenyl pyrophosphate

DMAPP:

Dimethylallyl pyrophosphate

GPP:

Geranyl pyrophosphate

References

  1. Dubey, V. S., Bhalla, R., & Luthra, R. (2003). Journal of Biosciences, 28, 637–646.

    Article  CAS  Google Scholar 

  2. Michelle, C. Y., Chang, J., & Keasling, D. (2006). Nature Chemical Biology, 2, 674–681.

    Article  Google Scholar 

  3. Kitano, H. (2002). Science, 295, 1662–1664.

    Article  CAS  Google Scholar 

  4. Sweetlove, L. J., Last, R. L., & Fernie, A. R. (2003). Plant Physiology, 132, 420–425.

    Article  CAS  Google Scholar 

  5. Sweetlove, L. J., & Fernie, A. R. (2005). New Phytologist, 168, 9–24.

    Article  CAS  Google Scholar 

  6. Hawari, A. H., & Mohamed-Hussein, Z. A. (2010). BMC Bioinformatics, 11, 83.

    Article  Google Scholar 

  7. Teaching Metabolic Control Analysis and Kinetic Modeling 1999. Available from: www.gepasi.org/TeachingMCA.pdf. Accessed February 14, 2011.

  8. Koch, I., Heiner, M. (2008) Petri nets, 1st edition: Analysis of Biological Networks (Junker, B, H., Schreiber, F) Wiley, Hoboken, NJ, USA.

  9. Gilbert, D., FuB, H., Gu, X., Orton, R., & Robinson, S. (2006). Briefings in Bioinformatics, 7(4), 339–353.

    Article  CAS  Google Scholar 

  10. Goryanin, I., Hodgman, T. C., & Selkov, E. (1999). Bioinformatics, 15(9), 749–758.

    Article  CAS  Google Scholar 

  11. Rohdich, F., Hecht, S., Gartner, K., & Adam, P. (2002). Proceedings of the National Academy of Science of the U.S.A, 99(3), 1158–1163.

    Article  CAS  Google Scholar 

  12. Voynova, N. E., Rios, S. E., & Miziorko, H. M. (2004). Journal of Bacteriology, 186(1), 61–67.

    Article  CAS  Google Scholar 

  13. Schulte, A. E., Heijden, V. D. R., & Verpoorte, R. (1999). Phytochemistry, 52(6), 975–983.

    Article  CAS  Google Scholar 

  14. Petri, C. A. (1962). Technical Report RADC-TR-65-377, 2. New York, US: Griffiss Air Force Base.

    Google Scholar 

  15. Hiroshi, M., Yukiko, T., Hitoshi, A., & Satoru, M. (2003). In Silico Biology, 3, 389–404.

    Google Scholar 

  16. Ina, K., Bjorn, H. J., & Monika, H. (2005). Bioinformatics, 21, 1219–1226.

    Article  Google Scholar 

  17. Kanehisa, M., Araki, M., Goto, S., Hattori, M., & Yamanishi, Y. (2008). Nucleic Acids Research, 36, D480–D484.

    Article  CAS  Google Scholar 

  18. Kanehisa, M., & Goto, S. (2000). Nucleic Acids Research, 28(1), 27–30.

    Article  CAS  Google Scholar 

  19. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., & Hirakawa, M. (2006). Nucleic Acids Research, 34, D354–D357.

    Article  CAS  Google Scholar 

  20. Chang, A., Scheer, M., Grote, A., & Schomburg, D. (2009). Nucleic Acids Research, 37, D588–D592.

    Article  CAS  Google Scholar 

  21. Caspi, R., Foerster, H., Fulcher, C. A., Kaipa, P., Krummenacker, M., & Tissier, C. (2008). Nucleic Acids Research, 36, D623–D631.

    Article  CAS  Google Scholar 

  22. Nagasaki, M. (2004), PhD Thesis, University of Tokyo, Japan.

  23. Miyano, S. 2004.25th International Conference on Application and Theory of Petri nets Bologna, Italy. Available from: http://genome.ib.sci.yamaguchi-u.ac.jp/~gon/presentation/ICATPN2004.pdf. Accessed February16, 2011.

  24. Newman, J. D., & Chappel, J. (1999). Critical Reviews in Biochemistry and Molecular Biology, 34, 95–106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Raju Baadhe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baadhe, R.R., Mekala, N.K., Palagiri, S.R. et al. Development of Petri Net-Based Dynamic Model for Improved Production of Farnesyl Pyrophosphate by Integrating Mevalonate and Methylerythritol Phosphate Pathways in Yeast. Appl Biochem Biotechnol 167, 1172–1182 (2012). https://doi.org/10.1007/s12010-012-9583-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9583-1

Keywords

Navigation