Skip to main content
Log in

Bovine Serum Albumin Nanospheres Synchronously Encapsulating “Gold Selenium/Gold” Nanoparticles and Photosensitizer for High-Efficiency Cancer Phototherapy

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Gold nanostructures have generated significant attention in biomedical areas because of their major role in cancer photothermal therapeutics. In order to conveniently combine gold nanostructures and drugs into one nanocomposite, Au2Se/Au core–shell nanostructures with strong near-infrared-absorbing properties were synthesized using a simple method and embedded inside bovine serum albumin (BSA) nanospheres by using a spray dryer equipped with an ultrasonic atomizer followed by thermal denaturation. The nanospheres with narrow size distribution mainly ranging from 450 to 600 nm were obtained. The Au2Se/Au-loaded BSA nanospheres (1 mg) adsorbed at least 0.01 mg of water-insoluble zinc phthalocyanine (ZnPc) photosensitizer. After irradiation with a 655-nm laser (20 min), the temperature of the Au2Se/Au-loaded BSA nanospheres [200 μL, 2 mg/mL, BSA/Au2Se/Au 10:1 (w/w)] increased by over 20 °C from the initial temperature of 24.82 ± 0.15 °C, and the release of ZnPc was improved compared with a corresponding sample without irradiation. After being incubated with cancer cells (human esophageal carcinoma Eca-109), the nanospheres exhibited photothermal and photodynamic therapy with a synergistic effect upon laser irradiation. This work provides novel Au2Se/Au-loaded polymer nanospheres prepared by a high-efficiency strategy for incorporating drugs for improving the efficiency in killing cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Raaphorst, G. P. (1990). Fundamental aspects of hyperthermic biology. In S. B. Field & J. W. Hand (Eds.), An introduction to the practical aspects of clinical hyperthermia (pp. 10–54). London: Taylor & Francis.

    Google Scholar 

  2. Fajardo, L. F. (1984). Pathological effects of hyperthermia in normal tissues. Cancer Research, 44, 4826s–4835s.

    CAS  Google Scholar 

  3. Hirsch, L. R., Stafford, R. J., Bankson, J. A., Sershen, S. R., Rivera, B., Price, R. E., et al. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America, 100, 13549–13554.

    Article  CAS  Google Scholar 

  4. Lowery, A. R., Gobin, A. M., Day, E. S., Halas, N. J., & West, J. L. (2006). Immunonanoshells for targeted photothermal ablation of tumor cell. International Journal of Nanomedicine, 1, 149–154.

    Article  CAS  Google Scholar 

  5. Gobin, A. M., Lee, M. H., Halas, N. J., James, W. D., Drezek, R. A., & West, J. L. (2007). Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Letters, 7, 1929–1934.

    Article  CAS  Google Scholar 

  6. Stern, J. M., Stanfield, J., Kabbani, W., Hsieh, J. T., & Cadeddu, J. A. (2008). Selective prostate cancer thermal ablation with laser activated gold nanoshells. Journal of Urology, 179, 748–753.

    Article  Google Scholar 

  7. Park, H., Yang, J., Lee, J., Haam, S., Choi, I. H., & Yoo, K. H. (2009). Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano, 3, 2919–2926.

    Article  CAS  Google Scholar 

  8. Wu, C. Y., Yu, C., & Chu, M. Q. (2011). A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy. International Journal of Nanomedicine, 6, 807–813.

    CAS  Google Scholar 

  9. Chen, J., Wang, D., Xi, J., Au, L., Siekkinen, A., Warsen, A., et al. (2007). Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Letters, 7, 1318–1322.

    Article  CAS  Google Scholar 

  10. Skrabalak, S. E., Au, L., Lu, X., Li, X., & Xia, Y. (2007). Gold nanocages for cancer detection and treatment. Nanomedicine, 2, 657–668.

    Article  CAS  Google Scholar 

  11. Hauck, T. S., Jennings, T. L., Yatsenko, T., Kumaradas, J. C., & Chan, W. C. W. (2008). Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Advanced Materials, 20, 3832–3838.

    Article  CAS  Google Scholar 

  12. Huang, X. H., El-Sayed, I. H., Qian, W., & El-Sayed, M. A. (2006). Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 128, 2115–2120.

    Article  CAS  Google Scholar 

  13. Wu, X., Ming, T., Wang, X., Wang, P. N., Wang, J. F., & Chen, J. Y. (2010). High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy. ACS Nano, 4, 113–120.

    Article  CAS  Google Scholar 

  14. Liu, X. W., Tao, H. Q., Yang, K., Zhang, S. A., Lee, S. T., & Liu, Z. A. (2011). Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials, 32, 144–151.

    Article  Google Scholar 

  15. Markovic, Z. M., Harhaji-Trajkovic, L. M., Todorovic-Markovic, B. M., Kepic, D. P., Arsikin, K. M., Jovanovic, S. P., et al. (2011). In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials, 32, 1121–1129.

    Article  CAS  Google Scholar 

  16. Huang, N. Y., Wang, H. Q., Zhao, J. H., Lui, H., Korbelik, M., & Zeng, H. S. (2010). Single-wall carbon nanotubes assisted photothermal cancer therapy: animal study with a murine model of squamous cell carcinoma. Lasers in Surgery and Medicine, 42, 638–648.

    Article  Google Scholar 

  17. Burke, A., Ding, X. F., Singh, R., Kraft, R. A., Levi-Polyachenko, N., Rylander, M. N., et al. (2009). Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proceedings of the National Academy of Sciences of the United States of America, 106, 12897–12902.

    Article  CAS  Google Scholar 

  18. Chakravarty, P., Marches, R., Zimmerman, N. S., Swafford, A. D., Bajaj, P., Musselman, I. H., et al. (2008). Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 105, 8697–8702.

    Article  CAS  Google Scholar 

  19. Zhang, M. F., Murakami, T., Ajima, K., Tsuchida, K., Sandanayaka, A. S., Ito, O., et al. (2008). Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proceedings of the National Academy of Sciences of the United States of America, 105, 14773–14778.

    Article  CAS  Google Scholar 

  20. Yang, K., Zhang, S., Zhang, G., Sun, X., Lee, S. T., & Liu, Z. (2010). Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters, 10, 3318–3323.

    Article  CAS  Google Scholar 

  21. Chu, M., Peng, P., Zhao, J., Liang, S., Shao, Y., & Wu, Q. (2013). Laser light triggered-activated carbon nanosystem for cancer therapy. Biomaterials, 34, 1820–1832.

    Article  CAS  Google Scholar 

  22. Chu, M., Pan, X., Zhang, D., Wu, Q., Peng, J., & Hai, W. (2012). The therapeutic efficacy of CdTe and CdSe quantum dots for photothermal cancer therapy. Biomaterials, 33, 7071–7083.

    Article  CAS  Google Scholar 

  23. Abels, C., Karrer, S., BaumLer, W., Goetz, A. E., Landthaler, M., & Szeimies, R. M. (1998). Indocyanine green and laser light for the treatment of AIDS-associated cutaneous Kaposi's sarcoma. British Journal of Cancer, 77, 1021–1024.

    Article  CAS  Google Scholar 

  24. Zheng, X., Xing, D., Zhou, F., Wu, B., & Chen, W. R. (2011). Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy. Molecular Pharmaceutics, 8, 447–456.

    Article  CAS  Google Scholar 

  25. Lim, H. J., & Oh, C. H. (2011). Indocyanine green-based photodynamic therapy with 785 nm light emitting diode for oral squamous cancer cells. Photodiagnosis and Photodynamic, 8, 337–342.

    Article  CAS  Google Scholar 

  26. Huang, X. H., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2008). Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 23, 217–228.

    Article  Google Scholar 

  27. Huang, X. H., & El-Sayed, M. A. (2010). Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research, 1, 13–28.

    Article  Google Scholar 

  28. Jelveh, S., & Chithrani, D. B. (2011). Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancers, 3, 1081–1110.

    Article  CAS  Google Scholar 

  29. Day, E. S., Bickford, L. R., Slater, J. H., Riggall, N. S., Drezek, R. A., & West, J. L. (2010). Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. International Journal of Nanomedicine, 5, 445–454.

    Article  CAS  Google Scholar 

  30. Gobin, A. M., Watkins, E. M., Quevedo, E., Colvin, V. L., & West, J. L. (2010). Near-infrared-resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent. Small, 6, 745–752.

    Article  CAS  Google Scholar 

  31. Jin, H., Hong, B., Kakar, S. S., & Kang, K. A. (2008). Tumor-specific nano-entities for optical detection and hyperthermic treatment of breast cancer. Advances in Experimental Medicine and Biology, 614, 275–284.

    Article  CAS  Google Scholar 

  32. Paddock, C. (2010). Gold-coated liposomes could make chemo more effective, less harmful. Available from: www.mednewstoday.com. Accessed October 1, 2011.

  33. Jang, B., Park, J. Y., Tung, C. H., Kim, I. H., & Choi, Y. (2011). Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano, 5, 1086–1094.

    Article  CAS  Google Scholar 

  34. You, J., Zhang, G. D., & Li, C. (2010). Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano, 4, 1033–1041.

    Article  CAS  Google Scholar 

  35. Yavuz, M. S., Cheng, Y. Y., Chen, J. Y., Cobley, C. M., Zhang, Q., Rycenga, M., et al. (2009). Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Materials, 8, 935–939.

    Article  CAS  Google Scholar 

  36. Norman, T. J., Grant, C. D., Magana, D., Zhang, J. Z., Liu, J., Cao, D. L., et al. (2002). Near infrared optical absorption of gold nanoparticle aggregates. The Journal of Physical Chemistry. B, 106, 7005–7012.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (81071833), the Natural Science Foundation of Jiangsu Province (SBK201123093), and the Program for New Century Excellent Talents in University (NCET-07-0618).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoquan Chu.

Additional information

Cong Yu, Fangjie Wo, and Yuxiang Shao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, C., Wo, F., Shao, Y. et al. Bovine Serum Albumin Nanospheres Synchronously Encapsulating “Gold Selenium/Gold” Nanoparticles and Photosensitizer for High-Efficiency Cancer Phototherapy. Appl Biochem Biotechnol 169, 1566–1578 (2013). https://doi.org/10.1007/s12010-012-0078-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0078-x

Keywords

Navigation