Skip to main content
Log in

Plant Growth Promotion by an Extracellular HAP-Phytase of a Thermophilic Mold Sporotrichum thermophile

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Phytase of the thermophilic mold Sporotrichum thermophile Apinis hydrolyzed and liberated inorganic phosphate from Ca+2, Mg+2, and Co+2 phytates more efficiently than those of Al3+, Fe2+, Fe3+, and Zn2+. The hydrolysis rate was higher at 60 °C as compared to 26 °C. Among all the organic acids tested, citrate was more effective in enhancing solubilization of insoluble phytate salts by phytase than others. The dry weight and inorganic phosphate contents of the wheat plants were high when supplemented with phytase or fungal spores. The plants provided with 5 mg phytate per plant exhibited enhanced growth and inorganic phosphate. With increase in the dosage of phytase, there was increase in growth and inorganic phosphate of plants, the highest being at 20 U per plant. The compost made employing the combined native microflora of the wheat straw and S. thermophile promoted growth of the plants. The plant-growth-promoting effect was also higher with the compost made using S. thermophile than that from only the native microflora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitchell, D. B., Vogel, K., Weimann, B. J., Pasamontes, L., & van Loon, A. P. G. M. (1997). Microbiology, 143(Pt 1), 245–252.

    Article  CAS  Google Scholar 

  2. Tang, J., Leung, A., Leung, C., & Lim, B. L. (2006). Soil Biology & Biochemistry, 38, 1316–1324. doi:10.1016/j.soilbio.2005.08.021.

    Article  CAS  Google Scholar 

  3. Wodzinski, R. J., & Ullah, A. H. J. (1996). Advances in Applied Microbiology, 42, 263–310. doi:10.1016/S0065-2164(08) 70375-7.

    Article  CAS  Google Scholar 

  4. Vohra, A., & Satyanarayana, T. (2003). Critical Reviews in Biotechnology, 23(1), 29–60. doi:10.1080/713609297.

    Article  CAS  Google Scholar 

  5. Sajjadi, M., & Carter, C. G. (2004). Aquaculture Nutrition, 10(2), 135–142. doi:10.1111/j.1365-2095.2003.00290.x.

    Article  CAS  Google Scholar 

  6. Lung, S. C., Chan, W. L., Yip, W., Wang, L., Yeung, E. C., & Lim, B. L. (2005). Plant Science, 169(2), 341–349. doi:10.1016/j.plantsci.2005.03.006.

    Article  CAS  Google Scholar 

  7. Lung, S. C., Leung, A., Kuang, R., Wang, Y., Leung, P., & Lim, B. L. (2008). Phytochemistry, 69(2), 365–373. doi:10.1016/j.phytochem.2007.06.036.

    Article  CAS  Google Scholar 

  8. Yip, W., Wang, L., Cheng, C., Wu, W., Lung, S., & Lim, B. L. (2003). Biochemical and Biophysical Research Communications, 310(4), 1148–1154. doi:10.1016/j.bbrc.2003.09.136.

    Article  CAS  Google Scholar 

  9. Satyanarayana, T., & Johri, B. N. (1983). Bionature, 3, 39–41.

    Google Scholar 

  10. Bhat, K. M., & Maheshwari, R. (1987). Applied and Environmental Microbiology, 53(9), 2175–2182.

    CAS  Google Scholar 

  11. Kaur, G., Kumar, S., & Satyanarayana, T. (2004). Bioresource Technology, 94(3), 239–243. doi:10.1016/j.biortech.2003.05.003.

    Article  CAS  Google Scholar 

  12. Kaur, G., & Satyanarayana, T. (2004). Indian Journal of Biotechnology, 3, 552–557.

    CAS  Google Scholar 

  13. Singh, B., & Satyanarayana, T. (2006). Applied Biochemistry and Biotechnology, 133(3), 239–250. doi:10.1385/ABAB:133:3:239.

    Article  CAS  Google Scholar 

  14. Singh, B., & Satyanarayana, T. (2008a). Bioresource Technology, 99(4), 824–830. doi:10.1016/j.biortech.2007.01.007.

    Article  CAS  Google Scholar 

  15. Singh, B., & Satyanarayana, T. (2008b). Bioresource Technology, 99(8), 2824–2830. doi:10.1016/j.biortech.2007.06.010.

    Article  CAS  Google Scholar 

  16. Singh, B., & Satyanarayana, T. (2008). Journal of Applied Microbiology, 105, 1858–1865. doi:10.1111/j.1365-2672.2008.03929.x.

    Article  CAS  Google Scholar 

  17. Singh, B., & Satyanarayana, T. (2009). Bioresource Technology, 100, 2046–2051. doi:10.1016/j.biortech.2008.10.025.

    Article  CAS  Google Scholar 

  18. Emerson, R. (1941). Lloydia, 4, 77–144.

    Google Scholar 

  19. Fiske, C. H., & Subbarao, Y. (1925). The Journal of Biological Chemistry, 65, 375–380.

    Google Scholar 

  20. Tarafdar, J. C., & Marschner, H. (1995). Plant and Soil, 173, 97–102. doi:10.1007/BF00155522.

    Article  CAS  Google Scholar 

  21. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  22. Maheshwari, R., Bharadwaj, G., & Bhat, M. K. (2000). Microbiology and Molecular Biology Reviews, 64(3), 461–488. doi:10.1128/MMBR.64.3.461-488.2000.

    Article  CAS  Google Scholar 

  23. Richardson, A. E., Hadobas, P. A., & Hayes, J. E. (2001). The Plant Journal, 25, 641–649. doi:10.1046/j.1365-313x.2001.00998.x.

    Article  CAS  Google Scholar 

  24. Yadav, R. S., & Tarafdar, J. C. (2003). Soil Biology & Biochemistry, 35(6), 745–751. doi:10.1016/S0038-0717(03)00089-0.

    Article  CAS  Google Scholar 

  25. Xiao, K., Harrison, M. J., & Wang, Z. Y. (2005). Planta, 222(1), 27–36. doi:10.1007/s00425-005-1511-y.

    Article  CAS  Google Scholar 

  26. Idriss, E. E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H., et al. (2002). Microbiology, 148(Pt 7), 2097–2109.

    CAS  Google Scholar 

  27. Li, X., Wu, Z., Li, W., Yan, R., Li, L., Li, J., et al. (2007). Applied Microbiology and Biotechnology, 74(5), 1120–1125. doi:10.1007/s00253-006-0750-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

BS gratefully acknowledges the financial assistance as Junior/Senior research fellowship from the Council of Scientific and Industrial Research (CSIR), New Delhi, India during the course of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, B., Satyanarayana, T. Plant Growth Promotion by an Extracellular HAP-Phytase of a Thermophilic Mold Sporotrichum thermophile . Appl Biochem Biotechnol 160, 1267–1276 (2010). https://doi.org/10.1007/s12010-009-8593-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8593-0

Keywords

Navigation