Skip to main content
Log in

Enhanced Pervaporation Performance of Multi-layer PDMS/PVDF Composite Membrane for Ethanol Recovery from Aqueous Solution

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Multi-layer PDMS/PVDF composite membrane with an alternative PDMS/PVDF/non-woven-fiber/PVDF/PDMS configuration was prepared in this paper. The porous PVDF substrate was obtained by casting PVDF solution on both sides of non-woven fiber with immersion precipitation phase inversion method. Polydimethylsiloxane (PDMS) was then cured by phenyltrimethoxylsilane (PTMOS) and coated onto the surface of porous PVDF substrate one layer by the other to obtain multi-layer PDMS/PVDF composite membrane. The multi-layer composite membrane was used for ethanol recovery from aqueous solution by pervaporation, and exhibited enhanced separation performance compared with one side PDMS/PVDF composite membranes, especially in the low ethanol concentration range. The maximum separation factor of multi-layer PDMS/PVDF composite membrane was obtained at 60 °C, and the total flux increased exponentially along with the increase of temperature. The composite membrane gave the best pervaporation performance with a separation factor of 15, permeation rate of 450 g/m2h with a 5 wt.% ethanol concentration at 60 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Matsuda, H., Yanagishita, H., Negishi, H., et al. (2002). Journal of Membrane Science, 210(2), 433–437. doi:10.1016/S0376-7388(02)00364-2.

    Article  CAS  Google Scholar 

  2. Ikegami, T., Kitamoto, D., Negishi, H., et al. (2003). Journal of Chemical Technology and Biotechnology, (Oxford, Oxfordshire), 78(9), 1006–1010. doi:10.1002/jctb.897.

    Article  CAS  Google Scholar 

  3. Wu, Y., Xiao, Z.Y., Huang, W.X., & Zhong, Y.H. (2005). Separation and Purification Technology, 42(1), 47–53. doi:10.1016/j.seppur.2004.06.003.

    Article  CAS  Google Scholar 

  4. Ikegami, T., Yanagishita, H., Kitamoto, D.K., et al. (1997). Biotechnology Techniques, 11(12), 921–924. doi:10.1023/A:1018474603027.

    Article  CAS  Google Scholar 

  5. Park, C.H., & Geng, Q. (1992). Separation and Purification Methods, 21(2), 127–174. doi:10.1080/03602549208021421.

    Article  CAS  Google Scholar 

  6. Lienhardt, J., Schripsema, J., Qureshi, N., et al. (2002). Applied Biochemistry and Biotechnology, 98(1–9), 591–598.

    Article  Google Scholar 

  7. Qureshi, N., & Blaschek, H.P. (2000). Applied Biochemistry and Biotechnology, 84(1–9), 225–236.

    Article  Google Scholar 

  8. Ishihara, K., & Matsui, K. (1987). Journal of Applied Polymer Science, 34(1), 437–440. doi:10.1002/app.1987.070340135.

    Article  CAS  Google Scholar 

  9. Nagase, Y., Mori, S., Matsui, K., et al. (1988). Journal of Polymer Science Part A Polymer Chemistry, 26(11), 3131–3137. doi:10.1002/pola.1988.080261122.

    Article  CAS  Google Scholar 

  10. Nagase, Y., Mori, S., & Matsui, K. (1989). Journal of Applied Polymer Science, 37(5), 1259–1267. doi:10.1002/app.1989.070370510.

    Article  CAS  Google Scholar 

  11. Ishihara, K., & Matsui, K. (1987). Journal of Applied Polymer Science, 34(1), 437–440. doi:10.1002/app.1987.070340135.

    Article  CAS  Google Scholar 

  12. Uragami, T., Doi, T., & Miyata, T. (1999). Journal of Adhesion & Adhesives, 19(5), 405–409. doi:10.1016/S0143-7496(98)00064-5.

    Article  CAS  Google Scholar 

  13. Toshiki, A. (1999). Progress in Polymer Science, 24, 951–993. doi:10.1016/S0079-6700(99)00020-9.

    Article  Google Scholar 

  14. Vane, L.M. (2005). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 80, 603–629. doi:10.1002/jctb.1265.

    Article  CAS  Google Scholar 

  15. Zhan, X., Li, J.D., Huang, J.Q., Chen, C.X. (2009), Chinese Journal Of Polymer Science, in press.

  16. Slater, C.S., Hickey, P.J., & Juricic, F.P. (1990). Separation Science and Technology, 25(9&10), 1063–1077. doi:10.1080/01496399008050385.

    Article  CAS  Google Scholar 

  17. Chang, C.L., & Chang, P.Y. (2006). Desalination, 192, 241–245. doi:10.1016/j.desal.2005.10.018.

    Article  CAS  Google Scholar 

  18. Chang, C.L., & Chang, M.S. (2004). Journal of Membrane Science, 238, 117–122. doi:10.1016/j.memsci.2004.03.026.

    Article  CAS  Google Scholar 

  19. Uragami, T. (2006). Desalination, 193, 335–343. doi:10.1016/j.desal.2005.09.026.

    Article  CAS  Google Scholar 

  20. Chang, C.L., Chang, H., & Chang, Y.C. (2007). Journal of the Chinese Institute of Chemical Engineers, 38, 43–51. doi:10.1016/j.jcice.2007.01.001.

    Article  CAS  Google Scholar 

  21. Li, L., Xiao, Z.Y., Tan, S.H.J., et al. (2004). Journal of Membrane Science, 243, 177–187. doi:10.1016/j.memsci.2004.06.015.

    Article  CAS  Google Scholar 

  22. Molina, J.M., Vatai, G., & Molnar, E.B. (2002). Desalination, 149, 89–94. doi:10.1016/S0011-9164(02)00737-3.

    Article  CAS  Google Scholar 

  23. Vankelecom, I.F.J., Depre, D., Beukelaer, S.D., et al. (1995). J Phys Chem, 99, 13193–13197. doi:10.1021/j100035a024.

    Article  CAS  Google Scholar 

  24. Liang, L., & Ruckenstein, E. (1996). Journal of Membrane Science, 114, 227–234. doi:10.1016/0376-7388(95)00319-3.

    Article  CAS  Google Scholar 

  25. Ishihara, K., & Matsui, K. (1987). Journal of Applied Polymer Science, 34, 437–440. doi:10.1002/app.1987.070340135.

    Article  CAS  Google Scholar 

  26. Mori, Y. (1990). Biotechnology and Bioengineering, 36, 849–853. doi:10.1002/bit.260360815.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the financial supports of the Major State Basic Research Program of China (No. 2009CB623404), National Natural Science Foundation of China (No. 20736003,No.20676067), National High Technology Research and Development Program of China (No.2007AA06Z317), Foundation of Ministry of Education of China (No. 20070003130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiding Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, X., Li, J., Huang, J. et al. Enhanced Pervaporation Performance of Multi-layer PDMS/PVDF Composite Membrane for Ethanol Recovery from Aqueous Solution. Appl Biochem Biotechnol 160, 632–642 (2010). https://doi.org/10.1007/s12010-008-8510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8510-y

Keywords

Navigation