Skip to main content
Log in

The Effect of Long-term Alendronate Treatment on Cortical Thickness of the Proximal Femur

  • Clinical Research
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

One of the radiographic hallmarks in patients with atypical femoral insufficiency fractures after prolonged bisphosphonate treatment is generalized cortical hypertrophy. Whether cortical thickening in the proximal femur is caused by long-term alendronate therapy, however, remains unknown.

Questions/purposes

We asked whether long-term alendronate use of 5 years or more results in progressive thickening of the subtrochanteric femoral cortices.

Patients and Methods

We retrospectively evaluated changes in cortical thickness and cortical thickness ratio (ratio of cortical to femoral shaft diameter) at the subtrochanteric region of the proximal femur in baseline and latest hip dual-energy xray absorptiometry (DXA) scans of 131 patients. The mean followup was 7.3 years. Patients were divided into two groups: control (no history of alendronate, 45 patients) and alendronate (history of alendronate ≥ 5 years, 86 patients). We determined cortical thickness and cortical thickness ratio at 3.5 and 4.0 cm below the tip of the greater trochanter, representing the subtrochanteric region.

Results

After a minimum of 5 years followup, mean cortical thickness decreased approximately 3% in the alendronate and control groups. The cortical thickness at the subtrochanteric femoral region changed less than 1 mm in greater than 90% of the patients with long-term alendronate treatment. We observed no differences in mean changes of cortical thickness and percent changes of cortical thickness between the two groups.

Conclusions

Long-term alendronate treatment did not appear to cause thickened femoral cortices within the detection limits of our method. This finding contrasts with the notion that long-term alendronate treatment leads to generalized cortical thickening.

Level of Evidence

Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Armamento-Villareal R, Napoli N, Diemer K, Watkins M, Civitelli R, Teitelbaum S, Novack D. Bone turnover in bone biopsies of patients with low-energy cortical fractures receiving bisphosphonates: a case series. Calcif Tissue Int. 2009;85:37–44.

    Article  PubMed  CAS  Google Scholar 

  2. Beck TJ, Lewiecki EM, Miller PD, Felsenberg D, Liu Y, Ding B, Libanati C. Effects of denosumab on the geometry of the proximal femur in postmenopausal women in comparison with alendronate. J Clin Densitom. 2008;11:351–359.

    Article  PubMed  Google Scholar 

  3. Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures: Fracture Intervention Trial Research Group. Lancet. 1996;348:1535–1541.

    Article  PubMed  CAS  Google Scholar 

  4. Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, Rodriguez-Portales JA, Downs RW, Gupta J, Santora AC, Liberman UA; Alendronate Phase III Osteoporosis Treatment Study Group. Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004;350:1189–1199.

    CAS  Google Scholar 

  5. Burghardt AJ, Kazakia GJ, Sode M, de Papp AE, Link TM, Majumdar S. A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res. 2010;25:2558–2571.

    Article  PubMed  Google Scholar 

  6. Delmas PD. Treatment of postmenopausal osteoporosis. Lancet. 2002;359:2018–2026.

    Article  PubMed  CAS  Google Scholar 

  7. Giusti A, Hamdy NA, Papapoulos SE. Atypical fractures of the femur and bisphosphonate therapy: a systematic review of case/case series studies. Bone. 2010;47:169–180.

    Article  PubMed  CAS  Google Scholar 

  8. Koh JS, Goh SK, Png MA, Kwek EB, Howe TS. Femoral cortical stress lesions in long-term bisphosphonate therapy: a herald of impending fracture?. J Orthop Trauma. 2010;24:75–81.

    Article  PubMed  Google Scholar 

  9. Lenart BA, Neviaser AS, Lyman S, Chang CC, Edobor-Osula F, Steele B, van der Meulen MC, Lorich DG, Lane JM. Association of low-energy femoral fractures with prolonged bisphosphonate use: a case control study. Osteoporos Int. 2009;20:1353–1362.

    Article  PubMed  CAS  Google Scholar 

  10. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res. 2000;15:613–620.

    Article  PubMed  CAS  Google Scholar 

  11. Mashiba T, Mori S, Burr DB, Komatsubara S, Cao Y, Manabe T, Norimatsu H. The effects of suppressed bone remodeling by bisphosphonates on microdamage accumulation and degree of mineralization in the cortical bone of dog rib. J Bone Miner Metab. 2005;23 Suppl:36–42.

    Article  PubMed  CAS  Google Scholar 

  12. Mashiba T, Turner CH, Hirano T, Forwood MR, Johnston CC, Burr DB. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone. 2001;28:524–531.

    Article  PubMed  CAS  Google Scholar 

  13. National Osteoporosis Foundation. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Washington, DC: National Osteoporosis Foundation; 2008.

  14. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–1441.

    Article  PubMed  CAS  Google Scholar 

  15. Neviaser AS, Lane JM, Lenart BA, Edobor-Osula F, Lorich DG. Low-energy femoral shaft fractures associated with alendronate use. J Orthop Trauma. 2008;22:346–350.

    Article  PubMed  Google Scholar 

  16. Odvina CV, Levy S, Rao S, Zerwekh JE, Rao DS. Unusual mid-shaft fractures during long-term bisphosphonate therapy. Clin Endocrinol (Oxf). 2010;72:161–168.

    Article  CAS  Google Scholar 

  17. Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005;90:1294–1301.

    Article  PubMed  CAS  Google Scholar 

  18. Papapoulos SE, Cremers SC. Prolonged bisphosphonate release after treatment in children. N Engl J Med. 2007;356:1075–1076.

    Article  PubMed  CAS  Google Scholar 

  19. Pols HA, Felsenberg D, Hanley DA, Stepan J, Munoz-Torres M, Wilkin TJ, Qin-sheng G, Galich AM, Vandormael K, Yates AJ, Stych B. Multinational, placebo-controlled, randomized trial of the effects of alendronate on bone density and fracture risk in postmenopausal women with low bone mass: results of the FOSIT study. Fosamax International Trial Study Group. Osteoporos Int. 1999;9:461–468.

    CAS  Google Scholar 

  20. Rodan G, Reszka A, Golub E, Rizzoli R. Bone safety of long-term bisphosphonate treatment. Curr Med Res Opin. 2004;20:1291–1300.

    Article  PubMed  CAS  Google Scholar 

  21. Russell RG. Bisphosphonates: the first 40 years. Bone. 2011;49:2–19.

    Article  PubMed  CAS  Google Scholar 

  22. Seeman E, Delmas PD, Hanley DA, Sellmeyer D, Cheung AM, Shane E, Kearns A, Thomas T, Boyd SK, Boutroy S, Bogado C, Majumdar S, Fan M, Libanati C, Zanchetta J. Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res. 2010;25:1886–1894.

    Article  PubMed  Google Scholar 

  23. Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster D, Einhorn TA, Genant HK, Geusens P, Klaushofer K, Koval K, Lane JM, McKiernan F, McKinney R, Ng A, Nieves J, O’Keefe R, Papapoulos S, Sen HT, van der Meulen MC, Weinstein RS, Whyte M; American Society for Bone and Mineral Research. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2010;25:2267–2294.

    Article  PubMed  Google Scholar 

  24. Tosteson AN, Burge RT, Marshall DA, Lindsay R. Therapies for treatment of osteoporosis in US women: cost-effectiveness and budget impact considerations. Am J Manag Care. 2008;14:605–615.

    PubMed  Google Scholar 

  25. Unnanuntana A, Gladnick BP, Donnelly E, Lane JM. The assessment of fracture risk. J Bone Joint Surg Am. 2010;92:743–753.

    Article  PubMed  Google Scholar 

  26. Visekruna M, Wilson D, McKiernan FE. Severely suppressed bone turnover and atypical skeletal fragility. J Clin Endocrinol Metab. 2008;93:2948–2952.

    Article  PubMed  CAS  Google Scholar 

  27. Watts NB, Chines A, Olszynski WP, McKeever CD, McClung MR, Zhou X, Grauer A. Fracture risk remains reduced one year after discontinuation of risedronate. Osteoporos Int. 2008;19:365–372.

    Article  PubMed  CAS  Google Scholar 

  28. Watts NB, Diab DL. Long-term use of bisphosphonates in osteoporosis. J Clin Endocrinol Metab. 2010;95:1555–1565.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Huong Do and Joseph T. Nguyen from the Department of Research, Epidemiology and Biostatistics Core at the Hospital for Special Surgery for help and guidance in data review and statistical analysis. We thank Margaret Eckert, Sylvia Hom, and Catherine Sutton from the Osteoporosis Prevention Center for help in searching the osteoporosis registry and collecting patient records. We also thank Matthew Seah for assistance with the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aasis Unnanuntana MD.

Additional information

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

About this article

Cite this article

Unnanuntana, A., Ashfaq, K., Ton, Q.V. et al. The Effect of Long-term Alendronate Treatment on Cortical Thickness of the Proximal Femur. Clin Orthop Relat Res 470, 291–298 (2012). https://doi.org/10.1007/s11999-011-1985-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-011-1985-9

Keywords

Navigation