Skip to main content

Advertisement

Log in

Diffuse Intrinsic Pontine Glioma: From Diagnosis to Next-Generation Clinical Trials

  • Neuro-oncology (R Soffietti, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

This review of diffuse intrinsic pontine glioma (DIPG) provides clinical background, a systematic approach to diagnosis and initial care, and synthesizes historical, modern, and future directions for treatment. We present evidence supporting neurosurgical biopsy, early palliative care involvement, limitation of glucocorticoid use, and the leveraging of preclinical DIPG models as a pipeline to next-generation clinical trials.

Recent findings

New molecular understanding of pediatric high-grade gliomas has led to the reclassification of DIPG as one member of a family of diffuse gliomas occurring in the midline of the central nervous system that exhibit pathognomonic mutations in genes encoding histone 3 (H3 K27M). DIPG remains a clinically relevant term, though diagnostically the 80% of DIPG cases that exhibit the H3 K27M mutation have been reclassified as diffuse midline glioma, H3 K27M-mutant. Re-irradiation has been shown to be well-tolerated and of potential benefit. Epigenetic targeting of transcriptional dependencies in preclinical models is fueling molecularly targeted clinical trials. Chimeric antigen receptor T cell immunotherapy has also demonstrated efficacy in preclinical models and provides a promising new clinical strategy.

Summary

DIPG is a universally fatal, epigenetically driven tumor of the pons that is considered part of a broader class of diffuse midline gliomas sharing H3 K27M mutations. Radiation remains the standard of care, single-agent temozolomide is not recommended, and glucocorticoids should be used only sparingly. A rapid evolution of understanding in the chromatin, signaling, and immunological biology of DIPG may soon result in clinical breakthroughs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Harris W. A case of pontine glioma, with special reference to the paths of gustatory sensation. Proc R Soc Med. 1926;19(Neurol Sect):1–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.

    PubMed  Google Scholar 

  3. •• Khuong-Quang DA, Buczkowicz P, Rakopoulos P, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2012;124(3):439–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. •• Wu G, Broniscer A, McEachron TA, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44(3):251–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. •• Schwartzentruber J, Korshunov A, Liu XY, et al. Driver mutations in histone H3.3 and chromatin remodeling genes in pediatric glioblastoma. Nature. 2012;482(7384):226–31.Wu et al., Khuong-Quang et al. and Schwartzentruber et al. discovered the highly recurrent H3 K27M mutation in DIPG and other pediatric midline gliomas. This discovery of an “oncohistone” has revolutionized our understanding of the pathophysiology of this disease and underscores the central role for epigenetic dysregulation in DIPG and other pediatric malignancies.

    CAS  PubMed  Google Scholar 

  6. Albright AL, Packer RJ, Zimmerman R, et al. Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children’s Cancer Group. Neurosurgery. 1993;33(6):1026–9 discussion 1029–30.

    CAS  PubMed  Google Scholar 

  7. Hankinson TC, Campagna EJ, Foreman NK, et al. Interpretation of magnetic resonance images in diffuse intrinsic pontine glioma: a survey of pediatric neurosurgeons. J Neurosurg Pediatr. 2011;8(1):97–102.

    PubMed  Google Scholar 

  8. Barkovich AJ, Krischer J, Kun LE, et al. Brain stem gliomas: a classification system based on magnetic resonance imaging. Pediatr Neurosurg. 1990;16(2):73–83.

    PubMed  Google Scholar 

  9. Pajtler, K.W., S.C. Mack, V. Ramaswamy, et al. The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol. 2016.

  10. Taylor MD, Northcott PA, Korshunov A, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123(4):465–72.

    CAS  PubMed  Google Scholar 

  11. Reis GF, Tihan T. Therapeutic targets in pilocytic astrocytoma based on genetic analysis. Semin Pediatr Neurol. 2015;22(1):23–7.

    PubMed  Google Scholar 

  12. Lapin DH, Tsoli M, Ziegler DS. Genomic insights into diffuse intrinsic pontine glioma. Front Oncol. 2017;7:57.

    PubMed  PubMed Central  Google Scholar 

  13. • Lieberman NAP, Vitanza NA, Crane CA. Immunotherapy for brain tumors: understanding early successes and limitations. Expert Rev Neurother. 2018;18(3):251–9.

    CAS  PubMed  Google Scholar 

  14. Lieberman NAP, DeGolier K, Kovar HM, et al. Characterization of the immune microenvironment of diffuse intrinsic pontine glioma: implications for development of immunotherapy. Neuro Oncol. 2019;21(1):83–94.

    PubMed  Google Scholar 

  15. •• Nagaraja S, Vitanza NA, Woo PJ, et al. Transcriptional dependencies in diffuse intrinsic pontine glioma. Cancer Cell. 2017, 31(5):635–652 e6.This preclinical work discovered DIPG’s vulnerabilities to BRD4 and CDK7 blockade, as well as their synergistic benefit when combined with HDAC inhibition.

    PubMed  PubMed Central  Google Scholar 

  16. • Lin GL, Nagaraja S, Filbin MG, et al. Non-inflammatory tumor microenvironment of diffuse intrinsic pontine glioma. Acta Neuropathol Commun. 2018;6(1):51 Lin et al. and Lieberman et al. independently discovered the microenvironment in DIPG is neither immunosuppresive nor inflammatory, making it distinct from that of adult GBM.

    PubMed  PubMed Central  Google Scholar 

  17. Becher OJ, Hambardzumyan D, Walker TR, et al. Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma. Cancer Res. 2010;70(6):2548–57.

    CAS  PubMed  Google Scholar 

  18. Biery, M., C. Myers, E. Girard, et al. A novel HDAC inhibitor in new patient-derived diffuse intrinsic pontine glioma (DIPG) models, in ISPNO2018 - International Symposium on Pediatric Neuro-Oncology. DIPG-35, Presentation. 2018: Denver, CO, USA. p. i56.

  19. Cage TA, Samagh SP, Mueller S, et al. Feasibility, safety, and indications for surgical biopsy of intrinsic brainstem tumors in children. Childs Nerv Syst. 2013;29(8):1313–9.

    PubMed  Google Scholar 

  20. Grasso CS, Tang Y, Truffaux N, et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med. 2015;21(6):555–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. • Gupta, N., L.C. Goumnerova, P. Manley, et al. Prospective feasibility and safety assessment of surgical biopsy for patients with newly diagnosed diffuse intrinsic pontine glioma. Neuro Oncol. 2018;20(11):1547–1555.An important prospective study evaluating the safety of biopsy for patients with DIPG.

  22. Larson JD, Kasper LH, Paugh BS, et al. Histone H3.3 K27M accelerates spontaneous brainstem glioma and drives restricted changes in bivalent gene expression. Cancer Cell. 2019;35(1):140–155 e7.

    CAS  PubMed  Google Scholar 

  23. Lin GL, Monje M. A protocol for rapid post-mortem cell culture of diffuse intrinsic pontine glioma (DIPG). J Vis Exp. 2017;(121).

  24. Puget S, Beccaria K, Blauwblomme T, et al. Biopsy in a series of 130 pediatric diffuse intrinsic pontine gliomas. Childs Nerv Syst. 2015;31(10):1773–80.

    PubMed  Google Scholar 

  25. Roujeau T, Machado G, Garnett MR, et al. Stereotactic biopsy of diffuse pontine lesions in children. J Neurosurg. 2007;107(1 Suppl):1–4.

    PubMed  Google Scholar 

  26. Tsoli M, Shen H, Mayoh C, et al. International experience in the development of patient-derived xenograft models of diffuse intrinsic pontine glioma. J Neurooncol. 2018.

  27. Wang ZJ, Rao L, Bhambhani K, et al. Diffuse intrinsic pontine glioma biopsy: a single institution experience. Pediatr Blood Cancer. 2015;62(1):163–5.

    PubMed  Google Scholar 

  28. Freeman CR, Farmer JP. Pediatric brain stem gliomas: a review. Int J Radiat Oncol Biol Phys. 1998;40(2):265–71.

    CAS  PubMed  Google Scholar 

  29. • Cooney T, Lane A, Bartels U, et al. Contemporary survival endpoints: an International Diffuse Intrinsic Pontine Glioma Registry study. Neuro Oncol. 2017;19(9):1279–80 An important update on international survival endpoints for children with DIPG.

    PubMed  PubMed Central  Google Scholar 

  30. Veldhuijzen van Zanten SE, Jansen MH, Sanchez Aliaga E, et al. A twenty-year review of diagnosing and treating children with diffuse intrinsic pontine glioma in The Netherlands. Expert Rev Anticancer Ther. 2014;15(2):157–64

  31. Lassman LP, Arjona VE. Pontine gliomas of childhood. Lancet. 1967;1(7496):913–5.

    CAS  PubMed  Google Scholar 

  32. Fisher PG, Breiter SN, Carson BS, et al. A clinicopathologic reappraisal of brain stem tumor classification. Identification of pilocystic astrocytoma and fibrillary astrocytoma as distinct entities. Cancer. 2000;89(7):1569–76.

    CAS  PubMed  Google Scholar 

  33. Fried I, Hawkins C, Scheinemann K, et al. Favorable outcome with conservative treatment for children with low grade brainstem tumors. Pediatr Blood Cancer. 2012;58(4):556–60.

    PubMed  Google Scholar 

  34. Giussani C, Poliakov A, Ferri RT, et al. DTI fiber tracking to differentiate demyelinating diseases from diffuse brain stem glioma. Neuroimage. 2010;52(1):217–23.

    PubMed  Google Scholar 

  35. Lober RM, Cho YJ, Tang Y, et al. Diffusion-weighted MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine glioma. J Neurooncol. 2014;117(1):175–82.

    PubMed  Google Scholar 

  36. Caretti V, Bugiani M, Freret M, et al. Subventricular spread of diffuse intrinsic pontine glioma. Acta Neuropathol. 2014;128(4):605–7.

    PubMed  PubMed Central  Google Scholar 

  37. • Huang TY, Piunti A, Lulla RR, et al. Detection of Histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma. Acta Neuropathol Commun. 2017;5(1):28.Considering DIPG biopsy’s requirement of neurosurgical precision, limited availability, low but significant risk of complications, and the decision’s emotional toll on families, this is an important study showing histone H3 mutations can be detected in CSF.

    PubMed  PubMed Central  Google Scholar 

  38. Saratsis AM, Yadavilli S, Magge S, et al. Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro Oncol. 2012;14(5):547–60.

    CAS  PubMed  Google Scholar 

  39. Pan C, Diplas BH, Chen X, et al. Molecular profiling of tumors of the brainstem by sequencing of CSF-derived circulating tumor DNA. Acta Neuropathol. 2018;137(2):297–306.

    PubMed  Google Scholar 

  40. Buczkowicz P, Bartels U, Bouffet E, et al. Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathol. 2014;128(4):573–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bozkurt SU, Dagcinar A, Tanrikulu B, et al. Significance of H3K27M mutation with specific histomorphological features and associated molecular alterations in pediatric high-grade glial tumors. Childs Nerv Syst. 2018;34(1):107–16.

    PubMed  Google Scholar 

  42. Pritchard CC, Salipante SJ, Koehler K, et al. Validation and implementation of targeted capture and sequencing for the detection of actionable mutation, copy number variation, and gene rearrangement in clinical cancer specimens. J Mol Diagn. 2014;16(1):56–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lewis PW, Muller MM, Koletsky MS, et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 2013;340(6134):857–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shankar GM, Lelic N, Gill CM, et al. BRAF alteration status and the histone H3F3A gene K27M mutation segregate spinal cord astrocytoma histology. Acta Neuropathol. 2016;131(1):147–50.

    PubMed  Google Scholar 

  45. •• Mackay A, Burford A, Carvalho D, et al. Integrated molecular meta-analysis of 1000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell. 2017;32(4):520–537. A comprehensive analysis of DIPG’s molecular aberrations and their clinical significance.

  46. Guida L, Roux FE, Massimino M, et al. Safety and efficacy of endoscopic third ventriculostomy in diffuse intrinsic pontine glioma related hydrocephalus: a systematic review. World Neurosurg. 2019;124:29–35.

    Google Scholar 

  47. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Drozdowicz LB, Bostwick JM. Psychiatric adverse effects of pediatric corticosteroid use. Mayo Clin Proc. 2014;89(6):817–34.

    CAS  PubMed  Google Scholar 

  49. Goforth P, Gudas CJ. Effects of steroids on wound healing: a review of the literature. J Foot Surg. 1980;19(1):22–8.

    CAS  PubMed  Google Scholar 

  50. Pappachan JM, Hariman C, Edavalath M, et al. Cushing’s syndrome: a practical approach to diagnosis and differential diagnoses. J Clin Pathol. 2017;70(4):350–9.

    CAS  PubMed  Google Scholar 

  51. Fauquette W, Amourette C, Dehouck MP, et al. Radiation-induced blood-brain barrier damages: an in vitro study. Brain Res. 2012;1433:114–26.

    CAS  PubMed  Google Scholar 

  52. Hue CD, Cho FS, Cao S, et al. Dexamethasone potentiates in vitro blood-brain barrier recovery after primary blast injury by glucocorticoid receptor-mediated upregulation of ZO-1 tight junction protein. J Cereb Blood Flow Metab. 2015;35(7):1191–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. • Luedi MM, Singh SK, Mosley JC, et al. A dexamethasone-regulated gene signature is prognostic for poor survival in glioblastoma patients. J Neurosurg Anesthesiol. 2017;29(1):46–58.This work highlights the importance of limiting steroid use in our patients.

    PubMed  PubMed Central  Google Scholar 

  54. Pitter KL, Tamagno I, Alikhanyan K, et al. Corticosteroids compromise survival in glioblastoma. Brain. 2016;139(Pt 5):1458–71.

    PubMed  PubMed Central  Google Scholar 

  55. Mandrell BN, Baker J, Levine D, et al. Children with minimal chance for cure: parent proxy of the child’s health-related quality of life and the effect on parental physical and mental health during treatment. J Neurooncol. 2016;129(2):373–81.

    PubMed  PubMed Central  Google Scholar 

  56. Langmoen IA, Lundar T, Storm-Mathisen I, et al. Management of pediatric pontine gliomas. Childs Nerv Syst. 1991;7(1):13–5.

    CAS  PubMed  Google Scholar 

  57. Janssens GO, Jansen MH, Lauwers SJ, et al. Hypofractionation vs conventional radiation therapy for newly diagnosed diffuse intrinsic pontine glioma: a matched-cohort analysis. Int J Radiat Oncol Biol Phys. 2013;85(2):315–20.

    PubMed  Google Scholar 

  58. Zaghloul MS, Eldebawy E, Ahmed S, et al. Hypofractionated conformal radiotherapy for pediatric diffuse intrinsic pontine glioma (DIPG): a randomized controlled trial. Radiother Oncol. 2014;111(1):35–40.

    PubMed  Google Scholar 

  59. Hankinson TC, Patibandla MR, Green A, et al. Hypofractionated radiotherapy for children with diffuse intrinsic pontine gliomas. Pediatr Blood Cancer. 2015.

  60. Packer RJ, Boyett JM, Zimmerman RA, et al. Outcome of children with brain stem gliomas after treatment with 7800 cGy of hyperfractionated radiotherapy. A Childrens Cancer Group Phase I/II Trial. Cancer. 1994;74(6):1827–34.

    CAS  PubMed  Google Scholar 

  61. Freese C, Takiar V, Fouladi M, et al. Radiation and subsequent reirradiation outcomes in the treatment of diffuse intrinsic pontine glioma and a systematic review of the reirradiation literature. Pract Radiat Oncol. 2017;7(2):86–92.

    PubMed  Google Scholar 

  62. Janssens GO, Gandola L, Bolle S, et al. Survival benefit for patients with diffuse intrinsic pontine glioma (DIPG) undergoing re-irradiation at first progression: a matched-cohort analysis on behalf of the SIOP-E-HGG/DIPG working group. Eur J Cancer. 2017;73:38–47.

    PubMed  Google Scholar 

  63. Lassaletta A, Strother D, Laperriere N, et al. Reirradiation in patients with diffuse intrinsic pontine gliomas: the Canadian experience. Pediatr Blood Cancer. 2018;65(6):e26988.

    PubMed  Google Scholar 

  64. Morales La Madrid A, Santa-Maria V, Cruz Martinez O, et al. Second re-irradiation for DIPG progression, re-considering “old strategies” with new approaches. Childs Nerv Syst. 2017;33(5):849–52.

    PubMed  Google Scholar 

  65. Robison NJ, Kieran MW. Diffuse intrinsic pontine glioma: a reassessment. J Neurooncol. 2014;119(1):7–15.

    CAS  PubMed  Google Scholar 

  66. Aquino-Parsons C, Hukin J, Green A. Concurrent carbogen and radiation therapy in children with high-risk brainstem gliomas. Pediatr Blood Cancer. 2008;50(2):397–9.

    CAS  PubMed  Google Scholar 

  67. Bradley KA, Zhou T, McNall-Knapp RY, et al. Motexafin-gadolinium and involved field radiation therapy for intrinsic pontine glioma of childhood: a children’s oncology group phase 2 study. Int J Radiat Oncol Biol Phys. 2013;85(1):e55–60.

    CAS  PubMed  Google Scholar 

  68. Freeman CR, Kepner J, Kun LE, et al. A detrimental effect of a combined chemotherapy-radiotherapy approach in children with diffuse intrinsic brain stem gliomas? Int J Radiat Oncol Biol Phys. 2000;47(3):561–4.

    CAS  PubMed  Google Scholar 

  69. Massimino M, Spreafico F, Biassoni V, et al. Diffuse pontine gliomas in children: changing strategies, changing results? A mono-institutional 20-year experience. J Neurooncol. 2008;87(3):355–61.

    CAS  PubMed  Google Scholar 

  70. Wagner S, Warmuth-Metz M, Emser A, et al. Treatment options in childhood pontine gliomas. J Neurooncol. 2006;79(3):281–7.

    PubMed  Google Scholar 

  71. Cohen KJ, Heideman RL, Zhou T, et al. Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the Children’s Oncology Group. Neuro Oncol. 2011;13(4):410–6.

    PubMed  PubMed Central  Google Scholar 

  72. Jalali R, Raut N, Arora B, et al. Prospective evaluation of radiotherapy with concurrent and adjuvant temozolomide in children with newly diagnosed diffuse intrinsic pontine glioma. Int J Radiat Oncol Biol Phys. 2010;77(1):113–8.

    CAS  PubMed  Google Scholar 

  73. Sharp JR, Bouffet E, Stempak D, et al. A multi-centre Canadian pilot study of metronomic temozolomide combined with radiotherapy for newly diagnosed paediatric brainstem glioma. Eur J Cancer. 2010;46(18):3271–9.

    CAS  PubMed  Google Scholar 

  74. Bailey S, Howman A, Wheatley K, et al. Diffuse intrinsic pontine glioma treated with prolonged temozolomide and radiotherapy--results of a United Kingdom phase II trial (CNS 2007 04). Eur J Cancer. 2013;49(18):3856–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Broniscer A, Baker JN, Tagen M, et al. Phase I study of vandetanib during and after radiotherapy in children with diffuse intrinsic pontine glioma. J Clin Oncol. 2010;28(31):4762–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Broniscer A, Baker SD, Wetmore C, et al. Phase I trial, pharmacokinetics, and pharmacodynamics of vandetanib and dasatinib in children with newly diagnosed diffuse intrinsic pontine glioma. Clin Cancer Res. 2013;19(11):3050–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Geoerger B, Hargrave D, Thomas F, et al. Innovative therapies for children with cancer pediatric phase I study of erlotinib in brainstem glioma and relapsing/refractory brain tumors. Neuro Oncol. 2011;13(1):109–18.

    CAS  PubMed  Google Scholar 

  78. Haas-Kogan DA, Banerjee A, Poussaint TY, et al. Phase II trial of tipifarnib and radiation in children with newly diagnosed diffuse intrinsic pontine gliomas. Neuro Oncol. 2011;13(3):298–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pollack IF, Jakacki RI, Blaney SM, et al. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro Oncol. 2007;9(2):145–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bartels U, Wolff J, Gore L, et al. Phase 2 study of safety and efficacy of nimotuzumab in pediatric patients with progressive diffuse intrinsic pontine glioma. Neuro Oncol. 2014;16(11):1554–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Veldhuijzen van Zanten SEM, El-Khouly FE, Jansen MHA, et al. A phase I/II study of gemcitabine during radiotherapy in children with newly diagnosed diffuse intrinsic pontine glioma. J Neurooncol. 2017;135(2):307–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kilburn LB, Kocak M, Baxter P, et al. A pediatric brain tumor consortium phase II trial of capecitabine rapidly disintegrating tablets with concomitant radiation therapy in children with newly diagnosed diffuse intrinsic pontine gliomas. Pediatr Blood Cancer. 2018;65(2):e26832.

    Google Scholar 

  83. Pollack IF, Stewart CF, Kocak M, et al. A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: a report from the Pediatric Brain Tumor Consortium. Neuro Oncol. 2011;13(3):290–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hashizume R, Andor N, Ihara Y, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med. 2014;20(12):1394–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. • Vitanza NA, Johnson A, Beebe A, et al. Locoregional HER2CAR T cells for pediatric central nervous system tumors: preclinical efficacy to tolerability in first patient. IMMU-02, Oral Presentation, in Society of Neuro-Oncology Pediatric Basic and Translational Research Conference. 2019: San Francisco, CA. This work highlights the initial patient experience in locoregionally delivering HER2 CAR T cells to children with recurrent/refractory CNS tumors, providing a framework for future locoregional DIPG CAR T cell trials.

  86. Ahmed N, Brawley V, Hegde M, et al. HER2-Specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 2017;3(8):1094–101.

    PubMed  PubMed Central  Google Scholar 

  87. Gardner RA, Finney O, Annesley C, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017;129(25):3322–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. • Mount CW, Majzner RG, Sundaresh S, et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M(+) diffuse midline gliomas. Nat Med. 2018;24(5):572–9.The first published DIPG-specific preclinical CAR T cell work, highlighting the vulnerability of targeting GD2.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. • Majzner RG, Theruvath JL, Nellan A, et al. CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res. 2019;25(8):2560–2574.B7-H3 has been identified as a surface antigen present in many pediatric CNS tumors and this preclinical work served as the foundation for upcoming B7-H3 CAR T cell trials for pediatric CNS tumors including DIPG.

    PubMed  Google Scholar 

  90. Halle B, Mongelard K, Poulsen FR. Convection-enhanced drug delivery for glioblastoma: a systematic review focused on methodological differences in the use of the convection-enhanced delivery method. Asian J Neurosurg. 2019;14(1):5–14.

    PubMed  PubMed Central  Google Scholar 

  91. Souweidane MM, Kramer K, Pandit-Taskar N, et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncol. 2018;19(8):1040–50.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Institute of Neurological Disorders and Stroke (R01NS092597), NIH Director’s Pioneer Award (DP1NS111132), Unravel Pediatric Cancer, McKenna Claire Foundation, Virginia and D.K. Ludwig Fund for Cancer Research, ChadTough Foundation, Defeat DIPG, and Abbie’s Army Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Monje MD, PhD.

Ethics declarations

Conflict of Interest

Nicholas A. Vitanza declares no potential conflicts of interest. Michelle Monje has a pending patent entitled “CAR T cell therapy to treat H3K27M midline gliomas.”

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitanza, N.A., Monje, M. Diffuse Intrinsic Pontine Glioma: From Diagnosis to Next-Generation Clinical Trials. Curr Treat Options Neurol 21, 37 (2019). https://doi.org/10.1007/s11940-019-0577-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-019-0577-y

Keywords

Navigation