Skip to main content
Log in

Early Ventricular Remodeling and Dysfunction in Obese Children and Adolescents

  • Pediatric Congenital Heart Disease (G Singh, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Obesity is an independent predictor of heart failure in adults. Obese individuals have increased hemodynamic load and neuro-hormonal activation that contribute, but cannot entirely explain the reported changes in ventricular structure and function leading to heart failure. There are intrinsic alterations in the myocardium that are independent of load. Insulin resistance promotes alterations in myocardial substrate metabolism that may play a role in the pathogenesis of decreased myocardial efficiency and cardiac dysfunction in obese individuals. The prevalence of obesity in childhood and adolescence has increased significantly over the last decade. Obese children and adolescents have left ventricular remodeling that transpires into adulthood, and subclinical systolic and diastolic dysfunction despite normal conventional parameters of ventricular function. These findings suggest that obesity has an early impact in the cardiovascular health of obese adolescents. Life-style modifications causing weight loss can reverse the ventricular dysfunction observed in this young population and must be strongly encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ogden CL, Flegal KM. Changes in terminology for childhood overweight and obesity. Natl Health Stat Rep. 2010;25:1–5.

    Google Scholar 

  2. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA. 2012;307(5):483–90. doi:10.1001/jama.2012.40.

    Article  PubMed  Google Scholar 

  3. Arnlov J, Ingelsson E, Sundstrom J, Lind L. Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men. Circulation. 2010;121(2):230–6. doi:10.1161/CIRCULATIONAHA.109.887521.

    Article  PubMed  Google Scholar 

  4. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–13. doi:10.1056/NEJMoa020245.

    Article  PubMed  Google Scholar 

  5. Wong C, Marwick TH. Obesity cardiomyopathy: pathogenesis and pathophysiology. Nat Clin Pract Cardiovasc Med. 2007;4(8):436–43. doi:10.1038/ncpcardio0943.

    Article  PubMed  CAS  Google Scholar 

  6. The NS, Suchindran C, North KE, Popkin BM, Gordon-Larsen P. Association of adolescent obesity with risk of severe obesity in adulthood. JAMA. 2010;304(18):2042–7. doi:10.1001/jama.2010.1635.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. de Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ, de Divitiis O, et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol. 1992;20(5):1251–60.

    Article  PubMed  Google Scholar 

  8. Barbosa JA, Mota CC, Simoes ESAC, Nunes Mdo C, Barbosa MM. Assessing pre-clinical ventricular dysfunction in obese children and adolescents: the value of speckle tracking imaging. Eur Heart J Cardiovasc Imaging. 2013;14(9):882–9. doi:10.1093/ehjci/jes294. Obese children without comorbidities have decreased left ventricular global longitudinal strain when compared with lean controls that was associated with body mass index.

    Article  PubMed  Google Scholar 

  9. Di Salvo G, Pacileo G, Del Giudice EM, Natale F, Limongelli G, Verrengia M, et al. Abnormal myocardial deformation properties in obese, non-hypertensive children: an ambulatory blood pressure monitoring, standard echocardiographic, and strain rate imaging study. Eur Heart J. 2006;27(22):2689–95. doi:10.1093/eurheartj/ehl163.

    Article  PubMed  Google Scholar 

  10. Chinali M, de Simone G, Roman MJ, Lee ET, Best LG, Howard BV, et al. Impact of obesity on cardiac geometry and function in a population of adolescents: the Strong Heart Study. J Am Coll Cardiol. 2006;47(11):2267–73. doi:10.1016/j.jacc.2006.03.004.

    Article  PubMed  Google Scholar 

  11. Sivanandam S, Sinaiko AR, Jacobs Jr DR, Steffen L, Moran A, Steinberger J. Relation of increase in adiposity to increase in left ventricular mass from childhood to young adulthood. Am J Cardiol. 2006;98(3):411–5. doi:10.1016/j.amjcard.2006.02.044.

    Article  PubMed  Google Scholar 

  12. Alpert MA, Lambert CR, Panayiotou H, Terry BE, Cohen MV, Massey CV, et al. Relation of duration of morbid obesity to left ventricular mass, systolic function, and diastolic filling, and effect of weight loss. Am J Cardiol. 1995;76(16):1194–7.

    Article  PubMed  CAS  Google Scholar 

  13. Crowley DI, Khoury PR, Urbina EM, Ippisch HM, Kimball TR. Cardiovascular impact of the pediatric obesity epidemic: higher left ventricular mass is related to higher body mass index. J Pediatr. 2011;158(5):709–14 e1. doi:10.1016/j.jpeds.2010.10.016.

    Article  PubMed  Google Scholar 

  14. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7(2):79–108. doi:10.1016/j.euje.2005.12.014.

    Article  PubMed  Google Scholar 

  15. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR. Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr. 2009;22(6):709–14. doi:10.1016/j.echo.2009.03.003.

    Article  PubMed  Google Scholar 

  16. Daniels SR, Loggie JM, Khoury P, Kimball TR. Left ventricular geometry and severe left ventricular hypertrophy in children and adolescents with essential hypertension. Circulation. 1998;97(19):1907–11.

    Article  PubMed  CAS  Google Scholar 

  17. Khositseth A SU, Chongviriyaphan N. Left ventricular mass and geometry in obese children. Asian J Clin Nutr. 2009(1):58–64.

  18. Koopman LP, McCrindle BW, Slorach C, Chahal N, Hui W, Sarkola T, et al. Interaction between myocardial and vascular changes in obese children: a pilot study. J Am Soc Echocardiogr. 2012;25(4):401–10 e1. doi:10.1016/j.echo.2011.12.018. Obese children had reduced left ventricular systolic and diastolic deformation parameters in association with increased arterial stiffiness that suggest abnormal ventricular-vascular interactions.

    Article  PubMed  Google Scholar 

  19. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23(4):351–69. doi:10.1016/j.echo.2010.02.015. quiz 453–5.

    Article  PubMed  Google Scholar 

  20. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr. 2011;12(3):167–205. doi:10.1093/ejechocard/jer021.

    Article  PubMed  Google Scholar 

  21. Labombarda F, Zangl E, Dugue AE, Bougle D, Pellissier A, Ribault V, et al. Alterations of left ventricular myocardial strain in obese children. Eur Heart J Cardiovasc Imaging. 2013;14(7):668–76. doi:10.1093/ehjci/jes238. Obese children without comorbities had reduced left ventricular global longitudinal strain compared with lean controls, that was independently associated with body mass index Z-score after adjusting for blood pressure and left ventricular mass.

    Article  PubMed  Google Scholar 

  22. Claus PBB, Weidemann F, Dommke C, Bito V, Heinzel F, Sipido K, et al. Post-systolic thickening in ischaemic myocardium: a simple mathematical model for simulating regional deformation. Lect Notes Comput Sci. 2001;2230:134–9.

    Article  Google Scholar 

  23. Obert P, Gueugnon C, Nottin S, Vinet A, Gayrard S, Rupp T, et al. Two-dimensional strain and twist by vector velocity imaging in adolescents with severe obesity. Obesity (Silver Spring). 2012;20(12):2397–405. doi:10.1038/oby.2012.111. Severely obese adolescents, in comparison with lean controls, had significantly reduced left ventricular longitudinal deformation parameters but increase ventricular twist and rotation, which represent compensatory mechanism to the decrease in longitudinal contractility.

    Article  Google Scholar 

  24. Shaw SM, Fox DJ, Williams SG. The development of left ventricular torsion and its clinical relevance. Int J Cardiol. 2008;130(3):319–25. doi:10.1016/j.ijcard.2008.05.061.

    Article  PubMed  Google Scholar 

  25. Saltijeral A, Isla LP, Perez-Rodriguez O, Rueda S, Fernandez-Golfin C, Almeria C, et al. Early myocardial deformation changes associated to isolated obesity: a study based on 3D-wall motion tracking analysis. Obesity (Silver Spring). 2011;19(11):2268–73. doi:10.1038/oby.2011.157.

    Article  Google Scholar 

  26. Batalli-Kepuska A, Bajraktari G, Zejnullahu M, Azemi M, Shala M, Batalli A, et al. Abnormal systolic and diastolic myocardial function in obese asymptomatic adolescents. Int J Cardiol. 2013;168(3):2347–51. doi:10.1016/j.ijcard.2013.01.025.

    Article  PubMed  Google Scholar 

  27. Sanchez-Mejia AA, Levy P, Sekarski T, Holland M, Singh GK. Cardiac dysfunction is associated with insulin resistance in obese adolescents. J Am Coll Cardiol. 2013;61:10S. doi:10.1016/S0735-1097(13)61080–3.

    Article  Google Scholar 

  28. de Simone G, Devereux RB, Kizer JR, Chinali M, Bella JN, Oberman A, et al. Body composition and fat distribution influence systemic hemodynamics in the absence of obesity: the HyperGEN Study. Am J Clin Nutr. 2005;81(4):757–61.

    PubMed  Google Scholar 

  29. Alpert MA. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci. 2001;321(4):225–36.

    Article  PubMed  CAS  Google Scholar 

  30. Alpert MA, Lambert CR, Terry BE, Cohen MV, Mukerji V, Massey CV, et al. Interrelationship of left ventricular mass, systolic function and diastolic filling in normotensive morbidly obese patients. Int J Obes Relat Metab Disord. 1995;19(8):550–7.

    PubMed  CAS  Google Scholar 

  31. Shah RV, Abbasi SA, Heydari B, Rickers C, Jacobs Jr DR, Wang L, et al. Insulin resistance, subclinical left ventricular remodeling, and the obesity paradox: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2013;61(16):1698–706. doi:10.1016/j.jacc.2013.01.053.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Di Bonito P, Capaldo B, Forziato C, Sanguigno E, Di Fraia T, Scilla C, et al. Central adiposity and left ventricular mass in obese children. Nutr Metab Cardiovasc Dis. 2008;18(9):613–7. doi:10.1016/j.numecd.2007.09.002.

    Article  PubMed  Google Scholar 

  33. Mehta SK. Left ventricular mass in children and adolescents with elevated body mass index and normal waist circumference. Am J Cardiol. 2014;113(6):1054–7. doi:10.1016/j.amjcard.2013.11.068. This study showed that children with increased waist circumference have greater left ventricular mass, compared with those with normal waist circumference, pointing to a major role of visceral adiposity in the pathophysiology of altered ventricular structure in children.

    Article  PubMed  Google Scholar 

  34. Duzova A, Yalcinkaya F, Baskin E, Bakkaloglu A, Soylemezoglu O. Prevalence of hypertension and decreased glomerular filtration rate in obese children: results of a population-based field study. Nephrol Dial Transplant. 2013;28 Suppl 4:iv166–71. doi:10.1093/ndt/gft317.

    Article  PubMed  Google Scholar 

  35. Galderisi M, Lomoriello VS, Santoro A, Esposito R, Olibet M, Raia R, et al. Differences of myocardial systolic deformation and correlates of diastolic function in competitive rowers and young hypertensives: a speckle-tracking echocardiography study. J Am Soc Echocardiogr. 2010;23(11):1190–8. doi:10.1016/j.echo.2010.07.010.

    Article  PubMed  Google Scholar 

  36. Peterson LR, Waggoner AD, Schechtman KB, Meyer T, Gropler RJ, Barzilai B, et al. Alterations in left ventricular structure and function in young healthy obese women: assessment by echocardiography and tissue Doppler imaging. J Am Coll Cardiol. 2004;43(8):1399–404. doi:10.1016/j.jacc.2003.10.062.

    Article  PubMed  Google Scholar 

  37. Bays HE, Gonzalez-Campoy JM, Bray GA, Kitabchi AE, Bergman DA, Schorr AB, et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther. 2008;6(3):343–68. doi:10.1586/14779072.6.3.343.

    Article  PubMed  CAS  Google Scholar 

  38. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004;145(5):2273–82. doi:10.1210/en.2003-1336.

    Article  PubMed  CAS  Google Scholar 

  39. Yamauchi T, Kadowaki T. Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int J Obes (Lond). 2008;32 Suppl 7:S13–8. doi:10.1038/ijo.2008.233.

    Article  CAS  Google Scholar 

  40. Bays HE. Adiposopathy is “sick fat” a cardiovascular disease? J Am Coll Cardiol. 2011;57(25):2461–73. doi:10.1016/j.jacc.2011.02.038.

    Article  PubMed  CAS  Google Scholar 

  41. Turer AT, Hill JA, Elmquist JK, Scherer PE. Adipose tissue biology and cardiomyopathy: translational implications. Circ Res. 2012;111(12):1565–77. doi:10.1161/CIRCRESAHA.111.262493.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Luiken JJ, Koonen DP, Willems J, Zorzano A, Becker C, Fischer Y, et al. Insulin stimulates long-chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of FAT/CD36. Diabetes. 2002;51(10):3113–9.

    Article  PubMed  CAS  Google Scholar 

  43. Wende AR, Abel ED. Lipotoxicity in the heart. Biochim Biophys Acta. 2010;1801(3):311–9. doi:10.1016/j.bbalip.2009.09.023.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Giacchetti G, Faloia E, Mariniello B, Sardu C, Gatti C, Camilloni MA, et al. Overexpression of the renin-angiotensin system in human visceral adipose tissue in normal and overweight subjects. Am J Hypertens. 2002;15(5):381–8.

    Article  PubMed  CAS  Google Scholar 

  45. Lijnen P, Petrov V. Renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes. J Mol Cell Cardiol. 1999;31(5):949–70. doi:10.1006/jmcc.1999.0934.

    Article  PubMed  CAS  Google Scholar 

  46. Festa A, D'Agostino Jr R, Hales CN, Mykkanen L, Haffner SM. Heart rate in relation to insulin sensitivity and insulin secretion in nondiabetic subjects. Diabetes Care. 2000;23(5):624–8.

    Article  PubMed  CAS  Google Scholar 

  47. Haney EM, Huffman LH, Bougatsos C, Freeman M, Steiner RD, Nelson HD. Screening and treatment for lipid disorders in children and adolescents: systematic evidence review for the US Preventive Services Task Force. Pediatrics. 2007;120(1):e189–214. doi:10.1542/peds.2006-1801.

    Article  PubMed  Google Scholar 

  48. Li S, Chen W, Srinivasan SR, Bond MG, Tang R, Urbina EM, et al. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart Study. JAMA. 2003;290(17):2271–6. doi:10.1001/jama.290.17.2271.

    Article  PubMed  CAS  Google Scholar 

  49. Mahoney LT, Burns TL, Stanford W, Thompson BH, Witt JD, Rost CA, et al. Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: the Muscatine Study. J Am Coll Cardiol. 1996;27(2):277–84.

    Article  PubMed  CAS  Google Scholar 

  50. Force USPST. Screening for lipid disorders in children: US Preventive Services Task Force recommendation statement. Pediatrics. 2007;120(1):e215–9. doi:10.1542/peds.2006-1812.

    Article  Google Scholar 

  51. Ingul CB, Tjonna AE, Stolen TO, Stoylen A, Wisloff U. Impaired cardiac function among obese adolescents: effect of aerobic interval training. Arch Pediatr Adolesc Med. 2010;164(9):852–9. doi:10.1001/archpediatrics.2010.158.

    PubMed  Google Scholar 

  52. Obert P, Gueugnon C, Nottin S, Vinet A, Gayrard S, Rupp T, et al. Impact of diet and exercise training-induced weight loss on myocardial mechanics in severely obese adolescents. Obesity (Silver Spring). 2013;21(10):2091–8. doi:10.1002/oby.20495. Obese adolescents that loose weight have improvement in insulin sensitivity and restoration of left ventricular longitudinal deformation parameters to normal, in the absence of changes in ventricular mass.

    Article  Google Scholar 

  53. Zeybek C, Celebi A, Aktuglu-Zeybek C, Onal H, Yalcin Y, Erdem A, et al. The effect of low-carbohydrate diet on left ventricular diastolic function in obese children. Pediatr Int. 2010;52(2):218–23. doi:10.1111/j.1442-200X.2009.02940.x.

    Article  PubMed  Google Scholar 

  54. Ippisch HM, Inge TH, Daniels SR, Wang B, Khoury PR, Witt SA, et al. Reversibility of cardiac abnormalities in morbidly obese adolescents. J Am Coll Cardiol. 2008;51(14):1342–8. doi:10.1016/j.jacc.2007.12.029.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Aura A. Sanchez declares no potential conflicts of interest. Dr. Gautam K. Singh is a section editor for Current Treatment Options in Cardiovascular Medicine.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. Only reference was made to a human study performed by the authors, which had Institutional Review Authorization by Washington University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam K. Singh MD.

Additional information

This article is part of the Topical Collection on Pediatric Congenital Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez, A.A., Singh, G.K. Early Ventricular Remodeling and Dysfunction in Obese Children and Adolescents. Curr Treat Options Cardio Med 16, 340 (2014). https://doi.org/10.1007/s11936-014-0340-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-014-0340-3

Keywords

Navigation