Skip to main content
Log in

Sodium Restriction in Heart Failure: Benefit or Harm?

  • Heart Failure (W Tang, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Current guidelines vary in the recommended amount of dietary sodium intake for heart failure (HF) patients. Observational studies and the hypertension literature support the concept that sodium restriction improves HF outcomes. In contrast, several randomized controlled trials imply that dietary sodium restriction can cause harm through hypovolemia and increased neurohormonal activation. Data from hypertensive animal models and humans suggest that dietary sodium intake may need to be individually tailored based on HF severity and the physiologic response to sodium loading. Future studies must assess interactions between sodium intake, fluid intake, and diuretics to match clinical practice and improve safety. More information is needed in multiple areas, including accurate measurement of sodium intake, implementation of dietary changes in HF patients, and establishment of biomarkers that predict response to changes in sodium intake. Additional research is urgently needed to determine the true impact of the most commonly recommended self-care strategy in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as:• Of importance •• Of major importance

  1. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–245.

    Article  PubMed  Google Scholar 

  2. Fonarow G, Abraham W, Albert N, et al. Factors identified as precipitating hospital admissions for heart failure and clinical outcomes: findings from OPTIMIZE-HF. Arch Intern Med. 2008;168:847–54.

    Article  PubMed  Google Scholar 

  3. Ambardekar AV, Fonarow GC, Hernandez AF, et al. Characteristics and in-hospital outcomes for nonadherent patients with heart failure: findings from Get With The Guidelines-Heart Failure (GWTG-HF). Am Heart J. 2009;158:644–52. Contemporary analysis of the contribution of therapeutic nonadherence to heart failure decompensation and outcomes.

    Article  PubMed  Google Scholar 

  4. Michalsen A, Konig G, Thimme W. Preventable causative factors leading to hospital admission with decompensated heart failure. [see comments.]. Heart. 1998;80:437–41.

    CAS  PubMed  Google Scholar 

  5. Tsuyuki RT, McKelvie RS, Arnold JM, et al. Acute precipitants of congestive heart failure exacerbations. Arch Intern Med. 2001;161:2337–42.

    Article  CAS  PubMed  Google Scholar 

  6. Gupta D, Georgiopoulou VV, Kalogeropoulos AP, et al. Dietary sodium intake in heart failure. Circulation. 2012;126:479–85.

    Article  CAS  PubMed  Google Scholar 

  7. Fonarow GC, Abraham WT, Albert NM, et al. Association between performance measures and clinical outcomes for patients hospitalized with heart failure. JAMA. 2007;297:61–70.

    Article  CAS  PubMed  Google Scholar 

  8. Hummel SL, DeFranco AC, Skorcz S, Montoye CK, Koelling TM. Recommendation of low-salt diet and short-term outcomes in heart failure with preserved systolic function. Am J Med. 2009;122:1029–36.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bernstein AM, Willett WC. Trends in 24-h urinary sodium excretion in the united states, 1957–2003: a systematic review. Am J Clin Nutr. 2010;92:1172–80.

    Article  CAS  PubMed  Google Scholar 

  10. Appel L, Frohlich E, Hall J, et al. The importance of population-wide sodium reduction as a means to prevent cardiovascular disease and stroke: a call to action from the American Heart Association. Circulation. 2011;123:1138–43. Prominent recent position paper advocating population-wide sodium intake restriction to 1,500 mg/24 hours.

    Article  PubMed  Google Scholar 

  11. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2013 Jun 5 (Epub ahead of print)

  12. Lindenfeld J, Albert NM, Boehmer JP, et al. HFSA 2010 comprehensive heart failure practice guideline. J Card Fail. 2010;16:e1–194.

    Article  PubMed  Google Scholar 

  13. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14:803–69.

    Article  CAS  PubMed  Google Scholar 

  14. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275:1557–62. Chicago, Ill.

    Article  CAS  PubMed  Google Scholar 

  15. Lloyd-Jones DM, Larson MG, Leip EP, et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation. 2002;106:3068–72. Illustrates the large contribution of hypertension to incident heart failure.

    Article  PubMed  Google Scholar 

  16. Beckett NS, Peters R, Fletcher AE, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358:1887–98.

    Article  CAS  PubMed  Google Scholar 

  17. Stamler J, Rose G, Stamler R, Elliott P, Dyer A, Marmot M. INTERSALT study findings: public health and medical care implications. Hypertension. 1989;14:570–7.

    Article  CAS  PubMed  Google Scholar 

  18. He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ. 2013;346:f1325.

    Article  PubMed  Google Scholar 

  19. He FJ, Burnier M, MacGregor GA. Nutrition in cardiovascular disease: salt in hypertension and heart failure. Eur. Heart J. 2011

  20. Gottdiener JS, Arnold AM, Aurigemma GP, et al. Predictors of congestive heart failure in the elderly: the Cardiovascular Health Study. J Am Coll Cardiol. 2000;35:1628–37.

    Article  CAS  PubMed  Google Scholar 

  21. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-sodium collaborative research group. N Engl J Med. 2001;344:3–10. Landmark study demonstrating the effects of dietary modification on blood pressure.

    Article  CAS  PubMed  Google Scholar 

  22. He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Dietary sodium intake and incidence of congestive heart failure in overweight US men and women: first National Health And Nutrition Examination Survey epidemiologic follow-up study. Arch Intern Med. 2002;162:1619–24.

    Article  PubMed  Google Scholar 

  23. Levitan EB, Wolk A, Mittleman MA. Consistency with the DASH diet and incidence of heart failure. Arch Intern Med. 2009;169:851–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Levitan EB, Wolk A, Mittleman MA. Relation of consistency with the Dietary Approaches to Stop Hypertension diet and incidence of heart failure in men aged 45 to 79 years. Am J Cardiol. 2009;104:1416–20.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Schmieder RE, Messerli FH, Garavaglia GE, Nunez BD. Dietary salt intake. A determinant of cardiac involvement in essential hypertension. Circulation. 1988;78:951–6.

    Article  CAS  PubMed  Google Scholar 

  26. Safar M, Temmar M, Kakou A, Lacolley P, Thornton S. Sodium intake and vascular stiffness in hypertension. Hypertension. 2009;54:203–9.

    Article  CAS  PubMed  Google Scholar 

  27. Langenfeld MR, Schobel H, Veelken R, Weihprecht H, Schmieder RE. Impact of dietary sodium intake on left ventricular diastolic filling in early essential hypertension. Eur Heart J. 1998;19:951–8.

    Article  CAS  PubMed  Google Scholar 

  28. Jula AM, Karanko HM. Effects on left ventricular hypertrophy of long-term nonpharmacological treatment with sodium restriction in mild-to-moderate essential hypertension. Circulation. 1994;89:1023–31.

    Article  CAS  PubMed  Google Scholar 

  29. Gates PE, Tanaka H, Hiatt WR, Seals DR. Dietary sodium restriction rapidly improves large elastic artery compliance in older adults with systolic hypertension. Hypertension. 2004;44:35–41.

    Article  CAS  PubMed  Google Scholar 

  30. Jablonski KL, Racine ML, Geolfos CJ, Gates PE, Chonchol M, McQueen MB, et al. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure. J Am Coll Cardiol. 2013;61:335–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Selektor Y, Weber KT. The salt-avid state of congestive heart failure revisited. Am J Med Sci. 2008;335:209–18.

    Article  PubMed  Google Scholar 

  32. Schrier RW. Body fluid volume regulation in health and disease: A unifying hypothesis. Ann Intern Med. 1990;113:155–9.

    Article  CAS  PubMed  Google Scholar 

  33. Ambrosy AP, Pang PS, Khan S, et al. Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: findings from the EVEREST trial. Eur Heart J. 2013;34:835–43.

    Article  PubMed  Google Scholar 

  34. Colombo PC, Banchs JE, Celaj S, et al. Endothelial cell activation in patients with decompensated heart failure. Circulation. 2005;111:58–62. Novel technique confirming importance of endothelial dysfunction in decompensated heart failure.

    Article  CAS  PubMed  Google Scholar 

  35. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53:582–8.

    Article  PubMed  Google Scholar 

  36. Mullens W, Abrahams Z, Francis GS, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Volpe M, Tritto C, DeLuca N, et al. Abnormalities of sodium handling and of cardiovascular adaptations during high salt diet in patients with mild heart failure. Circulation. 1993;88:1620–7.

    Article  CAS  PubMed  Google Scholar 

  38. McKie PM, Schirger JA, Costello-Boerrigter LC, et al. Impaired natriuretic and renal endocrine response to acute volume expansion in pre-clinical systolic and diastolic dysfunction. J Am Coll Cardiol. 2011;58:2095–103.

    Article  CAS  PubMed  Google Scholar 

  39. Son YJ, Lee Y, Song EK. Adherence to a sodium-restricted diet is associated with lower symptom burden and longer cardiac event-free survival in patients with heart failure. J Clin Nurs. 2011;20:3029–38.

    Article  PubMed  Google Scholar 

  40. Arcand J, Ivanov J, Sasson A, et al. A high-sodium diet is associated with acute decompensated heart failure in ambulatory heart failure patients: A prospective follow-up study. Am J Clin Nutr. 2011;93:332–7.

    Article  CAS  PubMed  Google Scholar 

  41. Spaderna H, Zahn D, Pretsch J, et al. Dietary habits are related to outcomes in patients with advanced heart failure awaiting heart transplantation. J Card Fail. 2013;19:240–50.

    Article  PubMed  Google Scholar 

  42. Kollipara UK, Jaffer O, Amin A, et al. Relation of lack of knowledge about dietary sodium to hospital readmission in patients with heart failure. Am J Cardiol. 2008;102:1212–5.

    Article  CAS  PubMed  Google Scholar 

  43. Koelling TM, Johnson ML, Cody RJ, Aaronson KD. Discharge education improves clinical outcomes in patients with chronic heart failure. Circulation. 2005;111:179–85.

    Article  PubMed  Google Scholar 

  44. Lainscak M, Cleland JGF, Lenzen MJ, et al. Recall of lifestyle advice in patients recently hospitalised with heart failure: A EuroHeart Failure survey analysis. Eur J Heart Fail. 2007;9:1095–103.

    Article  PubMed  Google Scholar 

  45. Frediani JK, Reilly CM, Higgins M, Clark PC, Gary RA, Dunbar SB. Quality and adequacy of dietary intake in a southern urban heart failure population. J Cardiovasc Nurs. 2013;28:119–28.

    Article  PubMed  Google Scholar 

  46. Bentley B, De Jong MJ, Moser DK, Peden AR. Factors related to nonadherence to low sodium diet recommendations in heart failure patients. Eur J Cardiovasc Nurs. 2005;4:331–6.

    Article  PubMed  Google Scholar 

  47. Neily JB, Toto KH, Gardner EB, et al. Potential contributing factors to noncompliance with dietary sodium restriction in patients with heart failure. Am Heart J. 2002;143:29–33.

    Article  CAS  PubMed  Google Scholar 

  48. de Souza JT, Matsubara LS, Menani JV, Matsubara BB, Johnson AK, De Gobbi JI. Higher salt preference in heart failure patients. Appetite. 2012;58:418–23.

    Article  PubMed  Google Scholar 

  49. Grassi G, Dell'Oro R, Seravalle G, Foglia G, Trevano FQ, Mancia G. Short- and long-term neuroadrenergic effects of moderate dietary sodium restriction in essential hypertension. Circulation. 2002;106:1957–61.

    Article  CAS  PubMed  Google Scholar 

  50. Alvelos M, Ferreira A, Bettencourt P, et al. The effect of dietary sodium restriction on neurohumoral activity and renal dopaminergic response in patients with heart failure. Eur J Heart Fail. 2004;6:593–9.

    Article  CAS  PubMed  Google Scholar 

  51. Mori T, Kurumazuka D, Matsumoto C, et al. Dietary salt restriction activates mineralocorticoid receptor signaling in volume-overloaded heart failure. Eur J Pharmacol. 2009;623:84–8.

    Article  CAS  PubMed  Google Scholar 

  52. Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low-sodium diet vs. high-sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (Cochrane review). Am J Hypertens. 2012;25:1–15. Extensive review of the neurohormonal effects of dietary sodium restriction.

    Article  CAS  PubMed  Google Scholar 

  53. Masson S, Solomon S, Angelici L, et al. Elevated plasma renin activity predicts adverse outcome in chronic heart failure, independently of pharmacologic therapy: data from the Valsartan Heart Failure Trial (Val-HeFT). J Card Fail. 2010;16:964–70.

    Article  CAS  PubMed  Google Scholar 

  54. Damgaard M, Norsk P, Gustafsson F, et al. Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure. Am J Physiol Regul Integr Comp Physiol. 2006;290:R1294–301.

    Article  CAS  PubMed  Google Scholar 

  55. Arcand J, Steckham K, Tzianetas R, L’Abbe MR, Newton GE. Evaluation of sodium levels in hospital patient menus. Arch Intern Med. 2012;172:1261–2.

    Article  PubMed  Google Scholar 

  56. Aliti GB, Rabelo ER, Clausell N, Rohde LE, Biolo A, Beck-da-Silva L. Aggressive fluid and sodium restriction in acute decompensated heart failure: a randomized clinical trial. JAMA Int Med. 2013;173:1058–64.

    Article  CAS  Google Scholar 

  57. Paterna S, Gaspare P, Fasullo S, Sarullo FM, Di Pasquale P. Normal-sodium diet compared with low-sodium diet in compensated congestive heart failure: is sodium an old enemy or a new friend? Clin Sci (Lond). 2008;114:221–30.

    Article  CAS  Google Scholar 

  58. Paterna S, Parrinello G, Cannizzaro S, Fasullo S, Torres D, Sarullo F, et al. Medium term effects of different dosage of diuretic, sodium, and fluid administration on neurohormonal and clinical outcome in patients with recently compensated heart failure. Am J Cardiol. 2009;103:93–102.

    Article  CAS  PubMed  Google Scholar 

  59. Paterna S, Fasullo S, Parrinello G, et al. Short-term effects of hypertonic saline solution in acute heart failure and long-term effects of a moderate sodium restriction in patients with compensated heart failure with New York Heart Association Class III (Class C) (SMAC-HF study). Am J Med Sci. 2011;342:27–37. Randomized study suggesting aggressive sodium restriction is harmful in heart failure with reduced ejection fraction.

    Article  PubMed  Google Scholar 

  60. Strom BL, Anderson CA, Ix JH. Sodium reduction in populations: insights from the Institute of Medicine committee. JAMA. 2013;310:31–2. Summary of recent Institute of Medicine recommendations regarding population sodium intake.

    Article  CAS  PubMed  Google Scholar 

  61. Dinicolantonio JJ, Pasquale PD, Taylor RS, Hackam DG. Low sodium versus normal sodium diets in systolic heart failure: systematic review and meta-analysis. Heart. 2013

  62. Alderman MH, Cohen HW. Dietary sodium intake and cardiovascular mortality: controversy resolved? Curr Hypertens Rep. 2012;14:193–201.

    Article  CAS  PubMed  Google Scholar 

  63. O'Donnell MJ, Yusuf S, Mente A, et al. Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA. 2011;306:2229–38.

    Article  PubMed  Google Scholar 

  64. Lennie TA, Song EK, Wu JR, et al. Three gram sodium intake is associated with longer event-free survival only in patients with advanced heart failure. J Card Fail. 2011;17:325–30.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Sachdeva A, Weder AB. Nocturnal sodium excretion, blood pressure dipping, and sodium sensitivity. Hypertension. 2006;48:527–33.

    Article  CAS  PubMed  Google Scholar 

  66. Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension. 2001;37:429–32. Cohort study illustrating increased cardiovascular risk due to salt-sensitive blood pressure phenotype.

    Article  CAS  PubMed  Google Scholar 

  67. Morimoto A, Uzu T, Fujii T, et al. Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet. 1997;350:1734–7.

    Article  CAS  PubMed  Google Scholar 

  68. Klotz S, Hay I, Zhang G, Maurer M, Wang J, Burkhoff D. Development of heart failure in chronic hypertensive Dahl rats: focus on heart failure with preserved ejection fraction.See comment. Hypertension. 2006;47:901–11. Summarizes a diet-modulated experimental model of heart failure with preserved ejection fraction.

    Article  CAS  PubMed  Google Scholar 

  69. Nagase M. Activation of the aldosterone/mineralocorticoid receptor system in chronic kidney disease and metabolic syndrome. Clin Exp Nephrol. 2010;14:303–14.

    Article  CAS  PubMed  Google Scholar 

  70. Matsui H, Ando K, Kawarazaki H, et al. Salt excess causes left ventricular diastolic dysfunction in rats with metabolic disorder. Hypertension. 2008;52:287–94.

    Article  CAS  PubMed  Google Scholar 

  71. Shapiro BP, Owan TE, Mohammed S, et al. Mineralocorticoid signaling in transition to heart failure with normal ejection fraction. Hypertension. 2008;51:289–95.

    Article  CAS  PubMed  Google Scholar 

  72. Rodriguez-Iturbe B, Vaziri N, Herrera-Acosta J, Johnson R. Oxidative stress, renal infiltration of immune cells, and salt-sensitive hypertension: all for one and one for all. Am J Physiol Ren Physiol. 2004;286:F606–16.

    Article  CAS  Google Scholar 

  73. Westermann D, Lindner D, Kasner M, et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction / clinical perspective. Circ Heart Fail. 2011;4:44–52. Establishes the importance of cardiac inflammation in heart failure with preserved ejection fraction.

    Article  PubMed  Google Scholar 

  74. van Heerebeek L, Hamdani N, Falcao-Pires I, et al. Low myocardial protein kinase g activity in heart failure with preserved ejection fraction. Circulation. 2012;126:830–9.

    Article  PubMed  Google Scholar 

  75. Kalogeropoulos A, Georgiopoulou V, Psaty BM, et al. Inflammatory markers and incident heart failure risk in older adults: The Health ABC (Health, Aging, and Body Composition) study. J Am Coll Cardiol. 2010;55:2129–37. Cohort study linking incident heart failure with markers of systemic inflammation.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Bihorac A, Tezcan H, Ozener C, Oktay A, Akoglu E. Association between salt sensitivity and target organ damage in essential hypertension. Am J Hypertens. 2000;13:864–72.

    Article  CAS  PubMed  Google Scholar 

  77. Verdecchia P, Schillaci G, Guerrieri M, Gatteschi C, Benemio G, Boldrini F, et al. Circadian blood pressure changes and left ventricular hypertrophy in essential hypertension. See comment. Circulation. 1990;81:528–36.

    Article  CAS  PubMed  Google Scholar 

  78. Kuznetsova T, Staessen JA, Brand E, et al. Sodium excretion as a modulator of genetic associations with cardiovascular phenotypes in the European Project On Genes in Hypertension (EPOGH). J Hypertens. 2006;24:235–42.

    Article  CAS  PubMed  Google Scholar 

  79. Zhao Q, Gu D, Hixson JE, Liu D-P, et al. Common variants in epithelial sodium channel genes contribute to salt sensitivity of blood pressure: the GENSALT study. Circ Cardiovasc Genet. 2011;4:375–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Weinberger MH. Salt sensitivity of blood pressure in humans. Hypertension. 1996;27:481–90.

    Article  CAS  PubMed  Google Scholar 

  81. Kimura G, Dohi Y, Fukuda M. Salt sensitivity and circadian rhythm of blood pressure: the keys to connect CKD with cardiovasucular events. Hypertens Res. 2010;33:515–20.

    Article  PubMed  Google Scholar 

  82. Hummel SL, Seymour EM, Brook RD, et al. Low-sodium Dietary Approaches to Stop Hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Hypertension. 2012;60:1200–6. Pilot study suggesting links between salt-sensitive experimental models and human heart failure with preserved ejection fraction.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Ingelsson E, Bjorklund-Bodegard K, Lind L, Arnlov J, Sundstrom J. Diurnal blood pressure pattern and risk of congestive heart failure. JAMA. 2006;295:2859–66.

    Article  CAS  PubMed  Google Scholar 

  84. Shin J, Kline S, Moore M, Gong Y, et al. Association of diurnal blood pressure pattern with risk of hospitalization or death in men with heart failure. J Card Fail. 2007;13:656–62.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Al-Solaiman Y, Jesri A, Zhao Y, Morrow JD, Egan BM. Low-sodium DASH reduces oxidative stress and improves vascular function in salt-sensitive humans. J. Hum. Hypertens. 2009

  86. Laffer CL, Bolterman RJ, Romero JC, Elijovich F. Effect of salt on isoprostanes in salt-sensitive essential hypertension. Hypertension. 2006;47:434–40.

    Article  CAS  PubMed  Google Scholar 

  87. Hummel SL, Seymour EM, Brook RD, et al. Low-sodium DASH diet improves diastolic function and ventricular-arterial coupling in hypertensive heart failure with preserved ejection fraction. Circ Heart Fail. 2013 Aug 28 (Epub ahead of print).

  88. Leiba A, Vald A, Peleg E, Shamiss A, Grossman E. Does dietary recall adequately assess sodium, potassium, and calcium intake in hypertensive patients? Nutrition. 2005;21:462–6.

    Article  CAS  PubMed  Google Scholar 

  89. Mann SJ, Gerber LM. Estimation of 24-h sodium excretion from a spot urine sample using chloride and creatinine dipsticks. Am J Hypertens. 2010;23:743–8.

    Article  CAS  PubMed  Google Scholar 

  90. Scisney-Matlock M, Glazewki L, McClerking C, Kachorek L. Development and evaluation of DASH diet tailored messages for hypertension treatment. Appl Nurs Res. 2006;19:78–87.

    Article  PubMed  Google Scholar 

  91. Boddi M, Poggesi L, Coppo M, et al. Human vascular renin-angiotensin system and its functional changes in relation to different sodium intakes. Hypertension. 1998;31:836–42.

    Article  CAS  PubMed  Google Scholar 

  92. Serneri GGN, Boddi M, Cecioni I, et al. Cardiac angiotensin II formation in the clinical course of heart failure and its relationship with left ventricular function. Circ Res. 2001;88:961–8.

    Article  CAS  PubMed  Google Scholar 

  93. Kobori H, Alper AB, Shenava R, et al. Urinary angiotensinogen as a novel biomarker of the intrarenal renin-angiotensin system status in hypertensive patients. Hypertension. 2009;53:344–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Fedorova OV, Shapiro JI, Bagrov AY. Endogenous cardiotonic steroids and salt-sensitive hypertension. Biochim Biophys Acta. 2010;1802

  95. Colombo PC, Onat D, Sabbah HN. Acute heart failure as "acute endothelitis" – interaction of fluid overload and endothelial dysfunction. Eur J Heart Fail. 2008;10:170–5.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Scott L. Hummel received a grant from NIH/NHLBI (#K23HL109176).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott L. Hummel MD, MS.

Additional information

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konerman, M.C., Hummel, S.L. Sodium Restriction in Heart Failure: Benefit or Harm?. Curr Treat Options Cardio Med 16, 286 (2014). https://doi.org/10.1007/s11936-013-0286-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-013-0286-x

Keywords

Navigation