Skip to main content
Log in

Principles of Electrical Stimulation and Dorsal Column Mapping as it Relates to Spinal Cord Stimulation: An Overview

  • Anesthetic Techniques in Pain Management (KA Williams, Section editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

The last 30 years have witnessed the growth of spinal cord stimulation as a treatment modality for an increasing number of chronic pain conditions. In spite of this growth, one of the greatest criticisms is the lack of concrete evidence for the mechanism of action. With the ever increasing enlightenment with regards to the neurophysiology of pain, and the development of more dynamic neuroimaging techniques, the opportunity to better define the mechanism of action of the spinal cord stimulator will continue to expand. In the interim, clinicians will benefit from the consolidation of the available knowledge that will enhance the effective use of the device. This review serves to provide an overview of the key principles of electrical stimulation and dorsal column mapping as it relates to spinal cord stimulation. We aim at enhancing the understanding regarding the basis for successful placement of leads and manipulation of electrical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kellaway P. The part played by electric fish in the early history of bioelectricity and electrotherapy. Bull Hist Med. 1946;20:112–37.

    PubMed  CAS  Google Scholar 

  2. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150:971–9.

    Article  PubMed  CAS  Google Scholar 

  3. Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg. 1967;46:489–91.

    PubMed  CAS  Google Scholar 

  4. Cruccu G. Treatment of painful neuropathy. Curr Opin Neurol. 2007;20:531–5.

    PubMed  CAS  Google Scholar 

  5. • North RB, Kumar K, Wallace MS, Henderson JM, Shipley J, Hernandez J, et al. Spinal cord stimulation vs re-operation in patients with failed back surgery syndrome: an international multicenter randomized controlled trial (EVIDENCE study). Neuromodulation. 2011;14:330–5. discussion 335–6. This is the first multi-center randomized control trial of SCS and re-operation and provides evidence for the value of SCS in the treatment of failed back surgery syndrome.

    Article  PubMed  Google Scholar 

  6. Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, et al. Spinal cord stimulation vs conventional medical management for neuropathic pain: a multicenter randomized controlled trial in patients with failed back surgery syndrome. Pain. 2007;132:179–88.

    Article  PubMed  Google Scholar 

  7. • Pluijms WA, Slangen R, Bakkers M, Faber CG, Merkies IS, Kessels AG, et al. Pain relief and quality-of-life improvement after spinal cord stimulation in painful diabetic polyneuropathy: a pilot study. Br J Anaesth. 2012;109(4):623–9. This is the first pilot study confirming the efficacy of SCS in the treatment of intractable painful diabetic peripheral neuropathy. The authors also sought to evaluate the predictive values of pre-operative clinical sensory testing.

    Article  PubMed  CAS  Google Scholar 

  8. • Williams KA, Gonzalez-Fernandez M, Hamzehzadeh S, Wilkinson I, Erdek MA, Plunkett A, et al. A multi-center analysis evaluating factors associated with spinal cord stimulation outcome in chronic pain patients. Pain Med. 2011;12:1142–53. This multicenter retrospective analysis provides insight into the factors associated with the outcome of the trial of the SCS.

    Article  PubMed  Google Scholar 

  9. •• van Eijs F, Smits H, Geurts JW, Kessels AG, Kemler MA, van Kleef M, et al. Brushed-evoked allodynia predicts outcome of spinal cord stimulation in complex regional pain syndrome type 1. Eur J Pain. 2010;14:164–9. This study provides evidence for the value of brushed evoked potentials in predicting outcome of SCS treatment in CRPS-1.

    Article  PubMed  Google Scholar 

  10. Hord ED, Cohen SP, Cosgrove GR, Ahmed SU, Vallejo R, Chang Y, et al. The predictive value of sympathetic block for the success of spinal cord stimulation. Neurosurgery. 2003;53:626–32.

    Article  PubMed  Google Scholar 

  11. McNeal DR. Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng. 1976;23:329–37.

    Article  PubMed  CAS  Google Scholar 

  12. Rattay F. Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng. 1986;33:974–7.

    Article  PubMed  CAS  Google Scholar 

  13. Ranck JB. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98:417–40.

    Article  PubMed  Google Scholar 

  14. BeMent SL, Ranck JB. A quantitative study of electrical stimulation of the myelinated fibers with monopolar electrodes. Exp Neurol. 1969;24:147–70.

    Article  PubMed  CAS  Google Scholar 

  15. Rijkhoff NJM, Koldewijn EL, Van Kerrebroeck PEV, Debbruyne FMJ, Wijkstra H. Acute animal studies on the use of an anodal block to reduce urethral resistance in sacral root stimulation. IEEE Trans Rehab Eng. 1994;2:92–9.

    Article  Google Scholar 

  16. Wee AS, Leis AA, Kuhn AR, Gilbert RW. Anodal block: can this occur during routine nerve conduction studies? Electromyogr Clin Neurophysiol. 2000;40:387–91.

    PubMed  CAS  Google Scholar 

  17. Wee AS. Anodal excitation of intact peripheral nerves in humans. Electromyogr Clin Neurophysiol. 2001;41:71–7.

    PubMed  CAS  Google Scholar 

  18. Holsheimer J, Wesselink WA. Optimum electrode geometry for spinal cord stimulation: the narrow bipole and tripole. Med Biol Eng Comput. 1997;35:493–7.

    Article  PubMed  CAS  Google Scholar 

  19. Holsheimer J. Which neuronal elements are activated directly by spinal cord stimulation. Neuromodulation. 2002;5:25–31.

    Article  PubMed  Google Scholar 

  20. He J, Barolat G, Ketcik B. Stimulation usage range for chronic pain management. Analgesia. 1994;1:75–80.

    Google Scholar 

  21. North RB, Kidd DH, Olin JC, Sieracki JM. Spinal cord stimulation electrode design: prospective, randomized, controlled trial comparing percutaneous and laminectomy electrodes. Part 1: technical outcomes. Neurosurgery. 2002;51:381–9.

    PubMed  Google Scholar 

  22. Feirabend HKP, Choufoer H, Ploeger S, Holsheimer J, Van Gool JD. Morphometry of the human superficial dorsal and dorsolateral column fibers: significance to spinal cord stimulation. Brain. 2002;125:1137–49.

    Article  PubMed  CAS  Google Scholar 

  23. Merrill DR, Bikson M, Jefferys JG. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141:171–98.

    Article  PubMed  Google Scholar 

  24. Yearwood TL. Neuropathic extremity pain and spinal cord stimulation. Pain Med. 2006;7(1):S97–S102.

    Article  Google Scholar 

  25. Hodgkin AL, Huxley AF. A quantitative description of membrane currents and its application to conduction and excitation in nerve. J Physiol. 1952;117:500–44.

    PubMed  CAS  Google Scholar 

  26. Strujik JJ, Holsheimer J, Boom HB. Epidural spinal cord stimulation: calculation of field potentials with special reference to dorsal column nerve fibers. IEEE Trans Biomed Eng. 1991;38:104–10.

    Article  Google Scholar 

  27. Geddes LA, Baker LE. The specific resistance of biological material-A compendium of data for the biomedical engineer and physiologist. Med Biol Eng. 1967;5:271–93.

    Article  PubMed  CAS  Google Scholar 

  28. Barolat G. Epidural spinal cord stimulation: anatomical and electrical properties of the intraspinal structures relevant to spinal cord stimulation and clinical correlations. Neuromodulation. 1998;2:63–71.

    Article  Google Scholar 

  29. Holsheimer J, Barolat G, Strujik JJ, He J. Significance of the spinal cord position in spinal cord stimulation. Acta Nezrrochir. 1995;64(Suppl):119–24.

    Article  CAS  Google Scholar 

  30. Holsheimer J, den Boer JA, Struijk JJ, et al. MR assessment of the normal position of the spinal cord in the spinal canal. Am J Neuroradiol. 1994;15:951–9.

    PubMed  CAS  Google Scholar 

  31. Tulgar M, Barolat G, Ketcik B. Analysis of parameters for epidural spinal cord stimulation. 1. Perception and tolerance thresholds resulting from 1100 combinations. Stereotact Funct Neurosurg. 1993;61:129–39.

    Article  PubMed  CAS  Google Scholar 

  32. Holsheimer J, Strujik JJ. How do geometric factors influence epidural spinal cord stimulation? A quantitative analysis by computer modeling. Stereotact Funct Neurosurg. 1991;56:234–49.

    Article  PubMed  CAS  Google Scholar 

  33. Strujik JJ, Holsheimer J, Barolat G, He J, Boom HB. Paresthesia thresholds in spinal cord stimulation: a comparison of theoretical results with clinical data. IEEE Trans Rehab End. 1993;1:101–8.

    Article  Google Scholar 

  34. Tulgar M, Barolat G, Ketcik B. Analysis of parameters for epidural spinal cord stimulation. 2. Usage ranges resulting from 3000 combinations. Stereotact Funct Neurosurg. 1994;61:140–5.

    Article  Google Scholar 

  35. Tulgar M, Barolat G, Ketcik B. Analysis of parameters for epidural spinal cord stimulation. 3. Topographical distribution of paresthesia– a preliminary analysis of 266 combinations with contacts implanted in the midcervical and midthoracic vertebral levels. Stereotact Funct Neurosurg. 1994;61:146–55.

    Article  Google Scholar 

  36. Buonocore M, Bonezzi C, Barolat G. Neurophysiological evidence of antidromic activation of large myelinated fibers in lower limbs during spinal cord stimulation. Spine. 2008;33:E90–3.

    Article  PubMed  Google Scholar 

  37. Barolat G, Zeme S, Ketcik B. Multifactorial analysis of epidural spinal cord stimulation. Stereotact Funct Neurosurg. 1991;56(2):77–103.

    Google Scholar 

  38. Holsherimer J, Barolat G. Spinal geometry and paresthesia coverage in spinal cord stimulation. Neuromodulation. 1998;3:129–6.

    Google Scholar 

  39. Holsheimer J, Struijk J, Wesselink W. Analysis of spinal cord stimulation and design of epidural electrodes by computer modeling. Neuromodulation. 1998;1:14–8.

    Article  PubMed  CAS  Google Scholar 

  40. Barolat G, Massaro F, He J, Zeme S, Ketcik B. Mapping of sensory responses to epidural stimulation of the intraspinal neural structures in man. J Neurosurg. 1993;78:233–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayode Williams.

Additional information

This article is part of the Topical Collection on Anesthetic Techniques in Pain Management

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramasubbu, C., Flagg, A. & Williams, K. Principles of Electrical Stimulation and Dorsal Column Mapping as it Relates to Spinal Cord Stimulation: An Overview. Curr Pain Headache Rep 17, 315 (2013). https://doi.org/10.1007/s11916-012-0315-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-012-0315-6

Keywords

Navigation