Skip to main content

Advertisement

Log in

Psychological Screening/Phenotyping as Predictors for Spinal Cord Stimulation

  • Anesthetic Techniques in Pain Management (KA Williams, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Spinal cord stimulation (SCS) is becoming a widely used treatment for a number of pain conditions and is frequently considered as a pain management option when conservative or less invasive techniques have proven to be ineffective. Potential indications for SCS include complex regional pain syndrome (CRPS), postherpetic neuralgia, traumatic nerve injury, failed back surgery syndrome, refractory angina pectoris, peripheral vascular disease, neuropathic pain, and visceral pain (Guttman et al. Pain Pract. 9:308–11, 2009). While research on SCS is in its infancy, it is clear that substantial variation exists in the degree of benefit obtained from SCS, and the procedure does not come without risks; thus focused patient selection is becoming very important. Psychological characteristics play an important role in shaping individual differences in the pain experience and may influence responses to SCS, as well as a variety of other pain treatments (Doleys Neurosurg Focus 21:E1, 2006). In addition to psychological assessment, quantitative sensory testing (QST) procedures offer another valuable resource in forecasting who may benefit most from SCS and may also shed light on mechanisms underlying the individual characteristics promoting the effectiveness of such procedures (Eisenberg et al. Pain Pract. 6:161–165, 2006). Here, we present a brief overview of recent studies examining these factors in their relationship with SCS outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg. 1967;46:489–91.

    PubMed  CAS  Google Scholar 

  2. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150:971–9.

    Article  PubMed  CAS  Google Scholar 

  3. North RB, Linderoth B. Spinal cord stimulation. In: Fishman SM, Ballantyne JC, Rathmell JP, editors. Bonica's management of pain. 4th ed. Philadelphia: Kluwer/Lippincott Williams & Wilkins; 2010. p. 1379–92.

    Google Scholar 

  4. Kemler MA, Barendse GA, van Kleef M, de Vet HC, Rijks CP, Furnee CA, et al. Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. N Engl J Med. 2000;343:618–24.

    Article  PubMed  CAS  Google Scholar 

  5. •• Sparkes E, Raphael JH, Duarte RV, LeMarchand K, Jackson C, Ashford RL. A systematic literature review of psychological characteristics as determinants of outcome for spinal cord stimulation therapy. Pain. 2010;150:284–9. This is a comprehensive, systematic review of the literature focused on psychological characteristics determining SCS outcomes.

    Article  PubMed  Google Scholar 

  6. Simpson EL, Duenas A, Holmes MW, Papaioannou D, Chilcott J. Spinal cord stimulation for chronic pain of neuropathic or ischaemic origin: systematic review and economic evaluation. Health Technol Assess. 2009;13:iii. ix-iii,154.

    Google Scholar 

  7. Guttman OT, Hammer A, Korsharskyy B. Spinal cord stimulation as a novel approach to the treatment of refractory neuropathic mediastinal pain. Pain Pract. 2009;9:308–11.

    Article  PubMed  Google Scholar 

  8. Doleys DM. Psychological factors in spinal cord stimulation therapy: brief review and discussion. Neurosurg Focus. 2006;21:E1.

    Article  PubMed  Google Scholar 

  9. Jamison RN, Craig KD. Psychological assessment of persons with chronic pain. In: Lynch ME, Craig KD, Peng PWH, editors. Clinical pain management: a practical guide. Oxford: Wiley-Blackwell; 2011. p. 81–91.

    Google Scholar 

  10. Tunks ER, Crook J, Weir R. Epidemiology of chronic pain with psychological comorbidity: prevalence, risk, course, and prognosis. Can J Psychiatry. 2008;53:224–34.

    PubMed  Google Scholar 

  11. Evers AW, Kraaimaat FW, van Riel PL, Bijlsma JW. Cognitive, behavioral and physiological reactivity to pain as a predictor of long-term pain in rheumatoid arthritis patients. Pain. 2001;93:139–46.

    Article  PubMed  CAS  Google Scholar 

  12. Fishbain DA. Approaches to treatment decisions for psychiatric comorbidity in the management of the chronic pain patient. Med Clin N Am. 1999;83:737–60. vii.

    Article  PubMed  CAS  Google Scholar 

  13. Jamison RN, Edwards RR, Liu X, Ross EL, Michna E, Warnick M, et al. Relationship of negative affect and outcome of an opioid therapy trial among low back pain patients. Pain Pract. 2012.

  14. Andersson HI, Ejlertsson G, Leden I, Schersten B. Impact of chronic pain on health care seeking, self care, and medication. Results from a population-based Swedish study. J Epidemiol Community Health. 1999;53:503–9.

    Article  PubMed  CAS  Google Scholar 

  15. Kalso E, Edwards JE, Moore RA, McQuay HJ. Opioids in chronic non-cancer pain: systematic review of efficacy and safety. Pain. 2004;112:372–80.

    Article  PubMed  CAS  Google Scholar 

  16. Granot M. Can we predict persistent postoperative pain by testing preoperative experimental pain? Curr Opin Anaesthesiol. 2009;22:425–30.

    Article  PubMed  Google Scholar 

  17. Edwards RR, Sarlani E, Wesselmann U, Fillingim RB. Quantitative assessment of experimental pain perception: multiple domains of clinical relevance. Pain. 2005;114:315–9.

    Article  PubMed  Google Scholar 

  18. Somogyi AA, Barratt DT, Coller JK. Pharmacogenetics of opioids. Clin Pharmacol Ther. 2007;81:429–44.

    Article  PubMed  CAS  Google Scholar 

  19. Edwards RR. Individual differences in endogenous pain modulation as a risk factor for chronic pain. Neurology. 2005;65:437–43.

    Article  PubMed  Google Scholar 

  20. Staahl C, Olesen AE, Andresen T, Arendt-Nielsen L, Drewes AM. Assessing efficacy of non-opioid analgesics in experimental pain models in healthy volunteers: an updated review. Br J Clin Pharmacol. 2009;68:322–41.

    Article  PubMed  CAS  Google Scholar 

  21. Arendt-Nielsen L, Yarnitsky D. Experimental and clinical applications of quantitative sensory testing applied to skin, muscles and viscera. J Pain. 2009;10:556–72.

    Article  PubMed  Google Scholar 

  22. Edwards RR, Doleys DM, Lowery D, Fillingim RB. Pain tolerance as a predictor of outcome following multidisciplinary treatment for chronic pain: differential effects as a function of sex. Pain. 2003;106:419–26.

    Article  PubMed  Google Scholar 

  23. Granot M, Zimmer EZ, Friedman M, Lowenstein L, Yarnitsky D. Association between quantitative sensory testing, treatment choice, and subsequent pain reduction in vulvar vestibulitis syndrome. J Pain. 2004;5:226–32.

    PubMed  Google Scholar 

  24. Eisenberg E, Backonja MM, Fillingim RB, Pud D, Hord DE, King GW, et al. Quantitative sensory testing for spinal cord stimulation in patients with chronic neuropathic pain. Pain Pract. 2006;6:161–5.

    Article  PubMed  Google Scholar 

  25. Basbaum AI. Spinal mechanisms of acute and persistent pain. Reg Anesth Pain Med. 1999;24:59–67.

    PubMed  CAS  Google Scholar 

  26. Melzack R, Coderre TJ, Katz J, Vaccarino AL. Central neuroplasticity and pathological pain. Ann N Y Acad Sci. 2001;933:157–74.

    Article  PubMed  CAS  Google Scholar 

  27. Bradley LA, McKendree-Smith NL. Central nervous system mechanisms of pain in fibromyalgia and other musculoskeletal disorders: behavioral and psychologic treatment approaches. Curr Opin Rheumatol. 2002;14:45–51.

    Article  PubMed  Google Scholar 

  28. Melzack R. From the gate to the neuromatrix. Pain. 1999;(Suppl 6):S121–6.

  29. Celestin J, Edwards RR, Jamison RN. Pretreatment psychosocial variables as predictors of outcomes following lumbar surgery and spinal cord stimulation: a systematic review and literature synthesis. Pain Med. 2009;10:639–53.

    Article  PubMed  Google Scholar 

  30. Jamison RN, Washington TA, Fanciullo GJ, Ross EL, McHugo GJ, Baird JC. Do implantable devices improve mood? Comparisons of chronic pain patients with or without an implantable device. Neuromodulation. 2008;11:260–6.

    Article  PubMed  Google Scholar 

  31. Burchiel KJ, Anderson VC, Wilson BJ, Denison DB, Olson KA, Shatin D. Prognostic factors of spinal cord stimulation for chronic back and leg pain. Neurosurgery. 1995;36:1101–10.

    Article  PubMed  CAS  Google Scholar 

  32. •• Atkinson L, Sundaraj SR, Brooker C, O'Callaghan J, Teddy P, Salmon J, et al. Recommendations for patient selection in spinal cord stimulation. J Clin Neurosci. 2011;18:1295–302. This manuscript provides suggestions on what factors may be important in selecting a strong candidate for SCS treatment.

    Article  PubMed  CAS  Google Scholar 

  33. DeGood DE, Tait RC. Assessment of pain beliefs and pain coping. In: Turk DC, Melzack R, editors. Handbook of pain assessment. New York: Guilford Press; 2001. p. 320–45.

    Google Scholar 

  34. Sparkes E, Duarte RV, Raphael JH, Denny E, Ashford RL. Qualitative exploration of psychological factors associated with spinal cord stimulation outcome. Chronic Illn. 2012.

  35. Molloy AR, Nicholas MK, Asghari A, Beeston LR, Dehghani M, Cousins MJ, et al. Does a combination of intensive cognitive-behavioral pain management and a spinal implantable device confer any advantage? A preliminary examination. Pain Pract. 2006;6:96–103.

    Article  PubMed  Google Scholar 

  36. Lame IE, Peters ML, Patijn J, Kessels AG, Geurts J. van KM. Can the outcome of spinal cord stimulation in chronic complex regional pain syndrome type I patients be predicted by catastrophizing thoughts? Anesth Analg. 2009;109:592–9.

    Article  PubMed  Google Scholar 

  37. Campbell CM, Edwards RR. Mind-body interactions in pain: the neurophysiology of anxious and catastrophic pain-related thoughts. Transl Res. 2009;153:97–101.

    Article  PubMed  Google Scholar 

  38. Falowski S, Celii A, Sharan A. Spinal cord stimulation: an update. Neurotherapeutics. 2008;5:86–99.

    Article  PubMed  Google Scholar 

  39. Oakley JC, Prager JP. Spinal cord stimulation: mechanisms of action. Spine. 2002;27:2574–83.

    Article  PubMed  Google Scholar 

  40. Yarnitsky D, Crispel Y, Eisenberg E, Granovsky Y, Ben-Nun A, Sprecher E, et al. Prediction of chronic post-operative pain: pre-operative DNIC testing identifies patients at risk. Pain. 2008;138:22–8.

    Article  PubMed  Google Scholar 

  41. Lindblom U, Meyerson BA. Influence on touch, vibration and cutaneous pain of dorsal column stimulation in man. Pain. 1975;1:257–70.

    Article  PubMed  CAS  Google Scholar 

  42. Marchand S, Bushnell MC, Molina-Negro P, Martinez SN, Duncan GH. The effects of dorsal column stimulation on measures of clinical and experimental pain in man. Pain. 1991;45:249–57.

    Article  PubMed  CAS  Google Scholar 

  43. Kemler MA, Reulen JP, Barendse GA, van Kleef M, de Vet HC, van den Wildenberg FA. Impact of spinal cord stimulation on sensory characteristics in complex regional pain syndrome type I: a randomized trial. Anesthesiology. 2001;95:72–80.

    Article  PubMed  CAS  Google Scholar 

  44. Rasche D, Ruppolt MA, Kress B, Unterbert A, Tronnier VM, eds. Quantitative sensory testing in patients with chronic unilateral radicular neuropathic pain and active spinal cord stimulation. Neuromodulation. 2006;9:239–47.

    Google Scholar 

  45. van Eijs F, Geurts JW, Van Zundert J, Faber CG, Kessels AG, Joosten EA, et al. Spinal cord stimulation in complex regional pain syndrome type I of less than 12-month duration. Neuromodulation. 2012;15(2):144–50.

    Google Scholar 

  46. de Andrade DC, Bendib B, Hattou M, Keravel Y, Nguyen JP, Lefaucheur JP. Neurophysiological assessment of spinal cord stimulation in failed back surgery syndrome. Pain. 2010;150(3):485–91.

    Google Scholar 

  47. Polácek H, Kozák J, Vrba I, Vrána J, Stancák A. Effects of spinal cord stimulation on the cortical somatosensory evoked potentials in failed back surgery syndrome patients. Clin Neurophysiol. 2007;118(6):1291–302.

    Google Scholar 

  48. Sindou MP, Mertens P, Bendavid U, Garcia-Larrea L, Mauguiere F. Predictive value of somatosensory evoked potentials for long-lasting pain relief after spinal cord stimulation: practical use for patient selection. Neurosurgery. 2003;52:1374–83.

    Article  PubMed  Google Scholar 

  49. Eide PK. Wind-up and the NMDA receptor complex from a clinical perspective. Eur J Pain. 2000;4:5–15.

    Article  PubMed  CAS  Google Scholar 

  50. Lautenbacher S, Roscher S, Strian F. Tonic pain evoked by pulsating heat: temporal summation mechanisms and perceptual qualities. Somatosens Mot Res. 1995;12(1):59–70

    Google Scholar 

  51. Arendt-Nielsen L, Petersen-Felix S. Wind-up and neuroplasticity: is there a correlation to clinical pain? Eur J Anaesthesiol. 1995;10(Suppl):1–7.

    CAS  Google Scholar 

  52. Staud R. Evidence of involvement of central neural mechanisms in generating fibromyalgia pain. Curr Rheumatol Rep. 2002;4:299–305.

    Article  PubMed  Google Scholar 

  53. Price D, Staud R, Robinson M, Mauderli A, Cannon R, Vierck C. Enhanced temporal summation of second pain and its central modulation in fibromyalgia patients. Pain. 2002;99:49.

    Article  PubMed  Google Scholar 

  54. Staud R, Vierck CJ, Cannon RL, Mauderli AP, Price DD. Abnormal sensitization and temporal summation of second pain (wind-up) in patients with fibromyalgia syndrome. Pain. 2001;91:165–75.

    Article  PubMed  CAS  Google Scholar 

  55. Maixner W, Fillingim R, Sigurdsson A, Kincaid S, Silva S. Sensitivity of patients with painful temporomandibular disorders to experimentally evoked pain: evidence for altered temporal summation of pain. Pain. 1998;76:71–81.

    Article  PubMed  CAS  Google Scholar 

  56. Bragdon EE, Light KC, Costello NL, Sigurdsson A, Bunting S, Bhalang K, et al. Group differences in pain modulation: pain-free women compared with pain-free men and to women with TMD. Pain. 2002;96:227–37.

    Article  PubMed  Google Scholar 

  57. Campbell CM, Bond K, Wacnik P, Williams K, Erdek M, Christo P, et al. Alterations in clinical pain and temporal summation following spinal cord stimulation. J Pain. 2012;13:S69.

    Google Scholar 

  58. Edwards RR, Fillingim RB. Effects of age on temporal summation of thermal pain: clinical relevance in healthy older and younger adults. J Pain. 2001;2:307–17.

    Article  PubMed  CAS  Google Scholar 

  59. Stancák A, Kozák J, Vrba I, Tintera J, Vrána J, Polácek H, Stancák M. Functional magnetic resonance imaging of cerebral activation during spinal cord stimulation in failed back surgery syndrome patients. Eur J Pain. 2008;12(2):137–48.

    Google Scholar 

  60. Nihashi T, Shiraishi S, Kato K, Ito S, Abe S, Nishino M, et al., editors. The response of brain with chronic pain during spinal cord stimulation, using FDG-PET. In: International Congress Series. 2004;1270:315–9.

  61. • Kishima H, Saitoh Y, Oshino S, Hosomi K, Ali M, Maruo T, et al. Modulation of neuronal activity after spinal cord stimulation for neuropathic pain; H(2)15O PET study. NeuroImage. 2010;49:2564–9. This study examines the neuronal activity of SCS through PET imaging.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia M. Campbell.

Additional information

This article is part of the Topical Collection on Anesthetic Techniques in Pain Management

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, C.M., Jamison, R.N. & Edwards, R.R. Psychological Screening/Phenotyping as Predictors for Spinal Cord Stimulation. Curr Pain Headache Rep 17, 307 (2013). https://doi.org/10.1007/s11916-012-0307-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-012-0307-6

Keywords

Navigation