Skip to main content
Log in

Osteoporotic Fracture Models

  • Orthopedic Management of Fractures (D Little and T Miclau, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Animal models are widely used to investigate the pathogenesis of osteoporosis and for the clinical testing of anti-resorptive drugs. However, osteoporotic fracture models designed to investigate novel ways to treat fractures of osteoporotic bone must fulfil requirements distinct from those of pharmacological testing. Bone strength and toughness, implant fixation and osteointegration and fracture repair are of particular interest. Osteoporotic models should reflect the underlying clinical scenario be that primary type 1 (post-menopausal) osteoporosis, primary type 2 (senile) osteoporosis or secondary osteoporosis. In each scenario, small and large animal models have been developed. While rodent models facilitate the study of fractures in strains specifically established to facilitate understanding of the pathologic basis of disease, concerns remain about the relevance of small animal fracture models to the human situation. There is currently no all-encompassing model, and the choice of species and model must be individualized to the scientific question being addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Davidson MK, Lindsey JR, Davis JK. Requirements and selection of an animal model. Isr J Med Sci. 1987;23(6):551–5.

    PubMed  CAS  Google Scholar 

  2. Simon LS. Osteoporosis. Rheum Dis Clin North Am. 2007;33(1):149–76. doi:10.1016/j.rdc.2006.12.005.

    Article  PubMed  Google Scholar 

  3. Gehron Robey P. The biochemistry of bone. Endocrinol Metab Clin North Am. 1989;18(4):858–902.

    PubMed  CAS  Google Scholar 

  4. Riggs BL, Melton 3rd LJ. Involutional osteoporosis. N Engl J Med. 1986;314(26):1676–86. doi:10.1056/nejm198606263142605.

    Article  PubMed  CAS  Google Scholar 

  5. Prior JC, Vigna YM, Schechter MT, Burgess AE. Spinal bone loss and ovulatory disturbances. N Engl J Med. 1990;323(18):1221–7. doi:10.1056/nejm199011013231801.

    Article  PubMed  CAS  Google Scholar 

  6. Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995;332(5):305–11. doi:10.1056/nejm199502023320506.

    Article  PubMed  CAS  Google Scholar 

  7. Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res. 2000;15(8):1526–36. doi:10.1359/jbmr.2000.15.8.1526.

    Article  PubMed  CAS  Google Scholar 

  8. Whyte MP, Bergfeld MA, Murphy WA, Avioli LV, Teitelbaum SL. Postmenopausal osteoporosis. A heterogeneous disorder as assessed by histomorphometric analysis of iliac crest bone from untreated patients. Am J Med. 1982;72(2):193–202.

    Article  PubMed  CAS  Google Scholar 

  9. Riggs BL, Melton 3rd LJ. The prevention and treatment of osteoporosis. N Engl J Med. 1992;327(9):620–7. doi:10.1056/nejm199208273270908.

    Article  PubMed  CAS  Google Scholar 

  10. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest. 1983;72(4):1396–409. doi:10.1172/jci111096.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Egermann M, Goldhahn J, Schneider E. Animal models for fracture treatment in osteoporosis. Osteoporos Int. 2005;16 Suppl 2:S129–38. doi:10.1007/s00198-005-1859-7.

    Article  PubMed  Google Scholar 

  12. Jacenko O, Olsen BR. Transgenic mouse models in studies of skeletal disorders. J Rheumatol Suppl. 1995;43:39–41.

    PubMed  CAS  Google Scholar 

  13. Houdebine LM. Transgenic animal models in biomedical research. Methods Mol Biol. 2007;360:163–202. doi:10.1385/1-59745-165-7:163.

    PubMed  CAS  Google Scholar 

  14. Holstein JH, Garcia P, Histing T, Kristen A, Scheuer C, Menger MD, et al. Advances in the establishment of defined mouse models for the study of fracture healing and bone regeneration. J Orthop Trauma. 2009;23(5 Suppl):S31–8. doi:10.1097/BOT.0b013e31819f27e5.

    Article  PubMed  CAS  Google Scholar 

  15. Mills LA, Simpson AH. In vivo models of bone repair. J Bone Joint Surg Br. 2012;94(7):865–74. doi:10.1302/0301-620x.94b7.27370. Up to date review outlining clinical scenarios of fracture healing and the available animal models that best reflect them.

    Article  PubMed  CAS  Google Scholar 

  16. Nunamaker DM. Experimental models of fracture repair. Clin Orthop Relat Res. 1998;355 Suppl:S56–65.

    Article  PubMed  Google Scholar 

  17. Okamoto Y, Takahashi K, Toriyama K, Takeda N, Kitagawa K, Hosokawa M, et al. Femoral peak bone mass and osteoclast number in an animal model of age-related spontaneous osteopenia. Anat Rec. 1995;242(1):21–8. doi:10.1002/ar.1092420104.

    Article  PubMed  CAS  Google Scholar 

  18. Silva MJ, Brodt MD, Ettner SL. Long bones from the senescence accelerated mouse SAMP6 have increased size but reduced whole-bone strength and resistance to fracture. J Bone Miner Res. 2002;17(9):1597–603. doi:10.1359/jbmr.2002.17.9.1597.

    Article  PubMed  Google Scholar 

  19. Kajkenova O, Lecka-Czernik B, Gubrij I, Hauser SP, Takahashi K, Parfitt AM, et al. Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J Bone Miner Res. 1997;12(11):1772–9. doi:10.1359/jbmr.1997.12.11.1772.

    Article  PubMed  CAS  Google Scholar 

  20. Syed FA, Hoey KA. Integrative physiology of the aging bone: insights from animal and cellular models. Ann N Y Acad Sci. 2010;1211:95–106. doi:10.1111/j.1749-6632.2010.05813.x.

    Article  PubMed  Google Scholar 

  21. Histing T, Stenger D, Kuntz S, Scheuer C, Tami A, Garcia P, et al. Increased osteoblast and osteoclast activity in female senescence-accelerated, osteoporotic SAMP6 mice during fracture healing. J Surg Res. 2012;175(2):271–7. doi:10.1016/j.jss.2011.03.052.

    Article  PubMed  Google Scholar 

  22. Histing T, Kuntz S, Stenger D, Scheuer C, Garcia P, Holstein JH, et al. Delayed fracture healing in aged senescence-accelerated P6 mice. J Invest Surg. 2013;26(1):30–5. doi:10.3109/08941939.2012.687435. Study of closed femoral fracture healing in senescence accelerated osteoporotic mice (SAMP6). Fracture healing was delayed in osteoporotic mice aged 10 months.

    Article  PubMed  Google Scholar 

  23. Egermann M, Heil P, Tami A, Ito K, Janicki P, Von Rechenberg B, et al. Influence of defective bone marrow osteogenesis on fracture repair in an experimental model of senile osteoporosis. J Orthop Res. 2010;28(6):798–804. doi:10.1002/jor.21041.

    PubMed  Google Scholar 

  24. Ding WG, Zhang ZM, Zhang YH, Jiang SD, Jiang LS, Dai LY. Changes of substance P during fracture healing in ovariectomized mice. Regul Pept. 2010;159(1–3):28–34. doi:10.1016/j.regpep.2009.11.004.

    Article  PubMed  CAS  Google Scholar 

  25. Li M, Healy DR, Li Y, Simmons HA, Crawford DT, Ke HZ, et al. Osteopenia and impaired fracture healing in aged EP4 receptor knockout mice. Bone. 2005;37(1):46–54. doi:10.1016/j.bone.2005.03.016.

    Article  PubMed  CAS  Google Scholar 

  26. Kubo T, Shiga T, Hashimoto J, Yoshioka M, Honjo H, Urabe M, et al. Osteoporosis influences the late period of fracture healing in a rat model prepared by ovariectomy and low calcium diet. J Steroid Biochem Mol Biol. 1999;68(5–6):197–202.

    Article  PubMed  CAS  Google Scholar 

  27. Perkins SL, Gibbons R, Kling S, Kahn AJ. Age-related bone loss in mice is associated with an increased osteoclast progenitor pool. Bone. 1994;15(1):65–72.

    Article  PubMed  CAS  Google Scholar 

  28. Cao J, Venton L, Sakata T, Halloran BP. Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res. 2003;18(2):270–7. doi:10.1359/jbmr.2003.18.2.270.

    Article  PubMed  CAS  Google Scholar 

  29. Ferguson VL, Ayers RA, Bateman TA, Simske SJ. Bone development and age-related bone loss in male C57BL/6J mice. Bone. 2003;33(3):387–98.

    Article  PubMed  Google Scholar 

  30. Bergman RJ, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ. Age-related changes in osteogenic stem cells in mice. J Bone Miner Res. 1996;11(5):568–77. doi:10.1002/jbmr.5650110504.

    Article  PubMed  CAS  Google Scholar 

  31. Meyer Jr RA, Desai BR, Heiner DE, Fiechtl J, Porter S, Meyer MH. Young, adult, and old rats have similar changes in mRNA expression of many skeletal genes after fracture despite delayed healing with age. J Orthop Res. 2006;24(10):1933–44. doi:10.1002/jor.20124.

    Article  PubMed  CAS  Google Scholar 

  32. D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res. 1999;14(7):1115–22. doi:10.1359/jbmr.1999.14.7.1115.

    Article  PubMed  Google Scholar 

  33. Tabensky A, Duan Y, Edmonds J, Seeman E. The contribution of reduced peak accrual of bone and age-related bone loss to osteoporosis at the spine and hip: insights from the daughters of women with vertebral or hip fractures. J Bone Miner Res. 2001;16(6):1101–7. doi:10.1359/jbmr.2001.16.6.1101.

    Article  PubMed  CAS  Google Scholar 

  34. Melton 3rd LJ, Beck TJ, Amin S, Khosla S, Achenbach SJ, Oberg AL, et al. Contributions of bone density and structure to fracture risk assessment in men and women. Osteoporos Int. 2005;16(5):460–7. doi:10.1007/s00198-004-1820-1.

    Article  PubMed  Google Scholar 

  35. Watanabe K, Hishiya A. Mouse models of senile osteoporosis. Mol Aspects Med. 2005;26(3):221–31. doi:10.1016/j.mam.2005.01.006.

    Article  PubMed  Google Scholar 

  36. Oheim R, Beil FT, Kohne T, Wehner T, Barvencik F, Ignatius A, et al. Sheep model for osteoporosis: sustainability and biomechanical relevance of low turnover osteoporosis induced by hypothalamic-pituitary disconnection. J Orthop Res. 2013;31(7):1067–74. doi:10.1002/jor.22327. Outlines a novel large animal model of primary type 2 (senile) osteoporosis. Hypothalamic-pituitary dissociation in sheep resulted in a low-turnover form of osteoporosis.

    Article  PubMed  Google Scholar 

  37. Horton WA. Skeletal development: insights from targeting the mouse genome. Lancet. 2003;362(9383):560–9. doi:10.1016/s0140-6736(03)14119-0.

    Article  PubMed  CAS  Google Scholar 

  38. Rosen CJ, Beamer WG, Donahue LR. Defining the genetics of osteoporosis: using the mouse to understand man. Osteoporos Int. 2001;12(10):803–10. doi:10.1007/s001980170030.

    Article  PubMed  CAS  Google Scholar 

  39. Abbott A. Laboratory animals: the Renaissance rat. Nature. 2004;428(6982):464–6. doi:10.1038/428464a.

    Article  PubMed  CAS  Google Scholar 

  40. A M. Fracture healing in osteopenic bone and the influence of simvastatin. Edinburgh: The University of Edinburgh; 2006.

  41. Stuermer EK, Sehmisch S, Rack T, Wenda E, Seidlova-Wuttke D, Tezval M, et al. Estrogen and raloxifene improve metaphyseal fracture healing in the early phase of osteoporosis. A new fracture-healing model at the tibia in rat. Langenbecks Arch Surg. 2010;395(2):163–72. doi:10.1007/s00423-008-0436-x.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Hiltunen A, Vuorio E, Aro HT. A standardized experimental fracture in the mouse tibia. J Orthop Res. 1993;11(2):305–12. doi:10.1002/jor.1100110219.

    Article  PubMed  CAS  Google Scholar 

  43. Manigrasso MB, O’Connor JP. Characterization of a closed femur fracture model in mice. J Orthop Trauma. 2004;18(10):687–95.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

AH Simpson and IR Murray both declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hamish Simpson.

Additional information

This article is part of the Topical Collection on Orthopedic Management of Fractures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simpson, A.H., Murray, I.R. Osteoporotic Fracture Models. Curr Osteoporos Rep 13, 9–15 (2015). https://doi.org/10.1007/s11914-014-0246-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0246-8

Keywords

Navigation