Skip to main content

Advertisement

Log in

The Utility of Cerebral Blood Flow Assessment in TBI

  • Neurotrauma (M Kumar, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Over the past few decades, intracranial monitoring technologies focused on treating and preempting secondary injury after traumatic brain injury (TBI) have experienced considerable growth. A physiological measure fundamental to the management of these patients is cerebral blood flow (CBF), which may be determined directly or indirectly. Direct measurement has proven difficult previously; however, invasive and non-invasive CBF monitors are now available. This article reviews the history of CBF measurements in TBI as well as the role of CBF in pathologies associated with TBI, such as cerebral autoregulation, hyperemia, and cortical spreading depression. The limitations of various CBF monitors are reviewed in order to better understand their role in TBI management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Coronado VG et al. Surveillance for traumatic brain injury-related deaths—United States, 1997–2007. MMWR Surveill Summ. 2011;60:1–32.

    PubMed  Google Scholar 

  2. Thurman D, Guerrero J. Trends in hospitalization associated with traumatic brain injury. JAMA. 1999;282:954–7.

    Article  CAS  PubMed  Google Scholar 

  3. Zaloshnja E, Miller T, Langlois J, et al. Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J Head Trauma Rehabil. 2008;23:394–400.

    Article  PubMed  Google Scholar 

  4. Moppett I. Traumatic brain injury: assessment, resuscitation and early management. Br J Anaesth. 2007;99:18–31.

    Article  CAS  PubMed  Google Scholar 

  5. Chesnut RM, Marshall LF, Klauber MR. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993. At http://europepmc.org/abstract/med/8459458.

  6. Jeremitsky E, Omert L, Dunham C, et al. Harbingers of poor outcome the day after severe brain injury: hypothermia, hypoxia, and hypoperfusion. J Trauma Inj Infect Crit Care. 2003;54:312.

    Article  Google Scholar 

  7. Guidelines for the management of severe traumatic brain injury. J Neurotrauma. 2007;24 Suppl 1:S1–106.

  8. Robertson CS et al. Prevention of secondary ischemic insults after severe head injury. Crit Care Med. 1999;27:2086–95.

    Article  CAS  PubMed  Google Scholar 

  9. Fick A. Ueber die Messung des Blutquantums in den Herzventrikeln. Sitz Physik-Med Ges. 1870;2:16–28.

    Google Scholar 

  10. Kety SS. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev. 1951;3:1–41.

    CAS  PubMed  Google Scholar 

  11. Lassen NA, Ingvar DH. Radioisotopic assessment of regional cerebral blood flow. Prog Nucl Med. 1972;1:376–409.

    CAS  PubMed  Google Scholar 

  12. Kelcz F, Hilal SK, Hartwell P, et al. Computed tomographic measurement of the xenon brain–blood partition coefficient and implications for regional cerebral blood flow: a preliminary report. Radiology. 1978;127:385–92.

    Article  CAS  PubMed  Google Scholar 

  13. Gur D et al. Simultaneous measurements of cerebral blood flow by the xenon/CT method and the microsphere method. A comparison. Invest Radiol. 1985;20:672–7.

    Article  CAS  PubMed  Google Scholar 

  14. Wolfson SK et al. Xenon-enhanced computed tomography compared with [14C]iodoantipyrine for normal and low cerebral blood flow states in baboons. Stroke. 1990;21:751–7.

    Article  PubMed  Google Scholar 

  15. Matsuda M et al. Comparative study of regional cerebral blood flow values measured by Xe CT and Xe SPECT. Acta Neurol Scand Suppl C. 1996;166:13–6.

    Article  CAS  Google Scholar 

  16. Nariai T. Comparison of measurement between Xe/CT CBF and PET in cerebrovascular disease and brain tumor. Acta Neurol Scand Suppl C. 1996;166:10–2.

    Article  CAS  Google Scholar 

  17. Valadka AB, Hlatky R, Furuya Y, et al. Brain tissue PO2: correlation with cerebral blood flow. Acta Neurochir Suppl. 2002;81:299–301.

    CAS  PubMed  Google Scholar 

  18. Bouma GJ, Muizelaar JP, Stringer WA, et al. Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg. 1992. At http://thejns.org/doi/abs/10.3171/jns.1992.77.3.0360@sup.2010.112.issue-2.

  19. Latchaw RE, Yonas H, Darby JM, et al. Xenon/CT cerebral blood flow determination following cranial trauma. Acta Radiol Suppl. 1986;369:370–3.

    CAS  PubMed  Google Scholar 

  20. Clyde BL, Resnick DK, Yonas H, et al. The relationship of blood velocity as measured by transcranial doppler ultrasonography to cerebral blood flow as determined by stable xenon computed tomographic studies after aneurysmal subarachnoid hemorrhage. Neurosurgery. 1996;38:896–904. discussion 904–5.

    Article  CAS  PubMed  Google Scholar 

  21. Lindegaard KF, Nornes H, Bakke SJ, et al. Cerebral vasospasm diagnosis by means of angiography and blood velocity measurements. Acta Neurochir (Wien). 1989;100:12–24.

    Article  CAS  Google Scholar 

  22. Krejza J, Kochanowicz J, Mariak Z, et al. Middle cerebral artery spasm after subarachnoid hemorrhage: detection with transcranial color-coded duplex US. Radiology. 2005;236:621–9.

    Article  PubMed  Google Scholar 

  23. Kaloostian P et al. Outcome prediction within twelve hours after severe traumatic brain injury by quantitative cerebral blood flow. J Neurotrauma. 2012;29:727–34.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Santbrink H, Schouten J, Steyerberg E, et al. Serial transcranial Doppler measurements in traumatic brain injury with special focus on the early posttraumatic period. Acta Neurochir. 2002;144:1141–9.

    Article  PubMed  Google Scholar 

  25. Marion DW, Darby JM. Hyperventilation and head injury. J Neurosurg. 1995;83:1113–4. author reply 1115–7.

    CAS  PubMed  Google Scholar 

  26. Zurynski YA, Dorsch N, Pearson I. Incidence and effects of increased cerebral blood flow velocity after severe head injury: a transcranial Doppler ultrasound study I. Prediction of post-traumatic vasospasm and hyperemia. J Neurol Sci. 1995. At http://www.sciencedirect.com/science/article/pii/0022510X95001729.

  27. Martin NA, Patwardhan RV, Alexander MJ. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg. 1997. At http://thejns.org/doi/abs/10.3171/jns.1997.87.1.0009.

  28. Steiger HJ, Aaslid R, Stooss R, et al. Transcranial Doppler monitoring in head injury: relations between type of injury, flow velocities, vasoreactivity, and outcome. Neurosurgery. 1994;34:79–85. discussion 85–6.

    Article  CAS  PubMed  Google Scholar 

  29. Fog M. The relationship between the blood pressure and the tonic regulation of the pial arteries. J Neurol Psychiatry. 1938;1:187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183–238.

    CAS  PubMed  Google Scholar 

  31. Busija DW, Heistad DD. Factors involved in the physiological regulation of the cerebral circulation. Rev Physiol Biochem Pharmacol. 1984;101:161–211.

    CAS  PubMed  Google Scholar 

  32. Osol G, Brekke JF, McElroy-Yaggy K, et al. Myogenic tone, reactivity, and forced dilatation: a three-phase model of in vitro arterial myogenic behavior. Am J Physiol Heart Circ Physiol. 2002;283:H2260–7.

    Article  CAS  PubMed  Google Scholar 

  33. Edvinsson L, MacKenzie E T, McCulloch J in 683. Raven Press; 1993.

  34. Piepgras A et al. A simple test to assess cerebrovascular reserve capacity using transcranial Doppler sonography and acetazolamide. Stroke. 1990;21:1306–11.

    Article  CAS  PubMed  Google Scholar 

  35. Yonas H, Pindzola RR. Clinical application of cerebrovascular reserve assessment as a strategy for stroke prevention. Keio J Med. 2000;49 Suppl 1:A4–10.

    PubMed  Google Scholar 

  36. Yonas H, Pindzola RR, Meltzer CC, et al. Qualitative versus quantitative assessment of cerebrovascular reserves. Neurosurgery. 1998;42:1005–10. discussion 1011–2.

    Article  CAS  PubMed  Google Scholar 

  37. Newell DW, Aaslid R, Stooss R, et al. The relationship of blood flow velocity fluctuations to intracranial pressure B waves. J Neurosurg. 1992;76:415–21.

    Article  CAS  PubMed  Google Scholar 

  38. Czosnyka M et al. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–7. discussion 17–9.

    Article  CAS  PubMed  Google Scholar 

  39. Czosnyka M, Smielewski P, Kirkpatrick P, et al. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27:1829–34.

    Article  CAS  PubMed  Google Scholar 

  40. Zweifel C, Lavinio A, Steiner LA, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008. At http://thejns.org/doi/abs/10.3171/foc.2008.25.10.e2.

  41. Strebel S, Lam AM, Matta B, et al. Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology 1995. At http://europepmc.org/abstract/med/7605020.

  42. Steiner L et al. Assessment of cerebrovascular autoregulation in head-injured patients: a validation study. Stroke. 2003;34:2404–9.

    Article  PubMed  Google Scholar 

  43. Schmidt B et al. Autoregulation monitoring and outcome prediction in neurocritical care patients: does one index fit all? J Clin Monit Comput. 2015. doi:10.1007/s10877-015-9726-3.

    PubMed  PubMed Central  Google Scholar 

  44. Balestreri M et al. Intracranial hypertension: what additional information can be derived from ICP waveform after head injury? Acta Neurochir (Wien). 2004;146:131–41.

    Article  CAS  Google Scholar 

  45. Czosnyka M, Balestreri M, Steiner L. Age, intracranial pressure, autoregulation, and outcome after brain trauma. J Neurosurg. 2005. At http://thejns.org/doi/abs/10.3171/jns.2005.102.3.0450.

  46. Steiner L et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733.

    Article  PubMed  Google Scholar 

  47. Aries M et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456.

    Article  PubMed  Google Scholar 

  48. Czosnyka M, Miller C, Monitoring P. Monitoring of cerebral autoregulation. Neurocrit Care. 2014;21:95–102. Czosnyka et al. provides a review article of cerebral autoregulation. A detailed summary of the literature and outcomes measures related to cerebral autoregulation is examined, leading to an “autoregulation”-guided therapy discussion opening the door to future research questions.

    Article  Google Scholar 

  49. Nordström C-H, Nielsen T. Critical thresholds for cerebrovascular reactivity: fact or fiction? Neurocrit Care. 2012;17:150–1.

    Article  PubMed  Google Scholar 

  50. Chohan MO et al. A novel single twist-drill access device for multimodal intracranial monitoring: a 5-year single-institution experience. Neurosurgery. 2014;10 Suppl 3:400–11. discussion 411.

    Article  PubMed  Google Scholar 

  51. Krasberg M, Mead B, Sena B, et al. Continuous assessment of cerebral blood flow autoregulation following aneurysmal subarachnoid hemorrhage: an important variable that is now clinically accessible. Poster presented at: the Congress of Neurological Surgeons Annual Meeting; October 2013; San Francisco, CA.

  52. Tackla R et al. Assessment of cerebrovascular autoregulation using regional cerebral blood flow in surgically managed brain trauma patients. Neurocrit Care. 2015. doi:10.1007/s12028-015-0146-5. Tackla et al. published their experience with regional CBF, comparing previously reported PRx-based autoregulation calculations with quantitative CBF-based autoregulation calculations finding significant differences in optimal vs ideal cerebral perfusion pressure values warranting further investigation into the relationship between PRx and quantitative CBF measurements.

    PubMed  Google Scholar 

  53. Lassen NA. The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. Lancet. 1966;2:1113–5.

    Article  CAS  PubMed  Google Scholar 

  54. Obrist WD, Langfitt TW, Jaggi JL, et al. Cerebral blood flow and metabolism in comatose patients with acute head injury: relationship to intracranial hypertension. J Neurosurg. 1984. At http://thejns.org/doi/abs/10.3171/jns.1984.61.2.0241@sup.2010.112.issue-2.

  55. Bruce DA, Alavi A, Bilaniuk L, et al. Diffuse cerebral swelling following head injuries in children: the syndrome of ‘malignant brain edema’. J Neurosurg. 1981. At http://thejns.org/doi/abs/10.3171/jns.1981.54.2.0170@col.2012.116.issue-6.

  56. Adelson P, Srinivas R, Chang Y, et al. Cerebrovascular response in children following severe traumatic brain injury. Childs Nerv Syst. 2011;27:1465–76.

    Article  PubMed  Google Scholar 

  57. Muizelaar JP, Marmarou A, DeSalles A. Cerebral blood flow and metabolism in severely head-injured children: Part 1: relationship with GCS score, outcome, ICP, and PVI. J Neurosurg. 1989. At http://thejns.org/doi/abs/10.3171/jns.1989.71.1.0063.

  58. Kelly DF, Kordestani RK, Martin NA, et al. Hyperemia following traumatic brain injury: relationship to intracranial hypertension and outcome. J Neurosurg. 1996. At http://thejns.org/doi/abs/10.3171/jns.1996.85.5.0762.

  59. Turek R, Linzer P, Filip M, et al. Application of transcranial color-coded sonography in severe brain injury. Brain Edema XV. 2013. doi:10.1007/978-3-7091-1434-6_50.

    Google Scholar 

  60. Leao A. Spreading depression of activity in the cerebral cortex. J Neurophysiol. 1944;7:359–90.

    Google Scholar 

  61. Kraig RP, Nicholson C. Extracellular ionic variations during spreading depression. Neuroscience. 1978;3:1045–59.

    Article  CAS  PubMed  Google Scholar 

  62. Mayevsky A, Weiss HR. Cerebral blood flow and oxygen consumption in cortical spreading depression. J Cereb Blood Flow Metab. 1991;11:829–36.

    Article  CAS  PubMed  Google Scholar 

  63. Fabricius M, Akgoren N, Lauritzen M. Arginine-nitric oxide pathway and cerebrovascular regulation in cortical spreading depression. Am J Physiol. 1995;269:H23–9.

    CAS  PubMed  Google Scholar 

  64. Piilgaard H, Lauritzen M. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex. J Cereb Blood Flow Metab. 2009;29:1517–27.

    Article  CAS  PubMed  Google Scholar 

  65. Dreier J et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain. 2009;132:1866–81.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dreier J. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17:439–47.

    Article  CAS  PubMed  Google Scholar 

  67. Dreier J et al. Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space. J Cereb Blood Flow Metab. 1998;18:978–90.

    Article  CAS  PubMed  Google Scholar 

  68. Dreier JP et al. Products of hemolysis in the subarachnoid space inducing spreading ischemia in the cortex and focal necrosis in rats: a model for delayed ischemic neurological deficits after subarachnoid hemorrhage? J Neurosurg. 2000;93:658–66.

    Article  CAS  PubMed  Google Scholar 

  69. Trabold R et al. Arterial hypotension triggers perifocal depolarizations and aggravates secondary damage in focal brain injury. Brain Res. 2006;1071:237–44.

    Article  CAS  PubMed  Google Scholar 

  70. Hartings JA, Strong AJ, Fabricius M. Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma. 2009. doi:10.1089/neu.2009.0961.

    PubMed  PubMed Central  Google Scholar 

  71. Hinzman J et al. Inverse neurovascular coupling to cortical spreading depolarizations in severe brain trauma. Brain. 2014;137:2960–72. Hinzman et al. reports on cortical spreading depolarizations and regional CBF probe monitoring, documenting “inverse neurovascular coupling” in TBI patients as a cause of secondary ischemic insults.

    Article  PubMed  Google Scholar 

  72. Hartings J et al. Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma. Brain. 2011;134:1529–40.

    Article  PubMed  Google Scholar 

  73. Vajkoczy P, Horn P, Thome C, et al. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003. At http://thejns.org/doi/abs/10.3171/jns.2003.98.6.1227.

  74. Gupta AK et al. Measurement of brain tissue oxygenation performed using positron emission tomography scanning to validate a novel monitoring method. J Neurosurg. 2002;96:263–8.

    Article  PubMed  Google Scholar 

  75. Rosenthal G et al. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med. 2008;36:1917.

    Article  CAS  PubMed  Google Scholar 

  76. Meixensberger J et al. Brain tissue oxygen guided treatment supplementing ICP/CPP therapy after traumatic brain injury. J Neurol Neurosurg Psychiatry. 2003;74:760–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Narotam PK, Morrison JF, Nathoo N. Brain tissue oxygen monitoring in traumatic brain injury and major trauma: outcome analysis of a brain tissue oxygen-directed therapy. J Neurosurg. 2009;111:672–82.

    Article  PubMed  Google Scholar 

  78. Spiotta AM et al. Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury. J Neurosurg. 2010;113:571–80.

    Article  PubMed  Google Scholar 

  79. Krasberg M, Akbik OS, Shin P, et al. Relationship of simultaneously recorded ventricular and parenchymal intracranial pressure. J Neurotrauma. 2015;32:A1–152.

    Article  Google Scholar 

  80. Artru F et al. Assessment of jugular blood oxygen and lactate indices for detection of cerebral ischemia and prognosis. J Neurosurg Anesthesiol. 2004;16:226.

    Article  PubMed  Google Scholar 

  81. Kiening KL, Unterberg AW, Bardt TF. Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue PO2 versus jugular vein oxygen saturation. J Neurosurg. 1996. At http://thejns.org/doi/abs/10.3171/jns.1996.85.5.0751.

  82. Gopinath SP, Valadka AB, Uzura M, et al. Comparison of jugular venous oxygen saturation and brain tissue Po2 as monitors of cerebral ischemia after head injury. Crit Care Med. 1999;27:2337–45.

    Article  CAS  PubMed  Google Scholar 

  83. Gupta A et al. Measuring brain tissue oxygenation compared with jugular venous oxygen saturation for monitoring cerebral oxygenation after traumatic brain injury. Anesth Analg. 1999;88:549.

    CAS  PubMed  Google Scholar 

  84. Oddo M, Bösel J, Monitoring P. Monitoring of brain and systemic oxygenation in neurocritical care patients. Neurocrit Care. 2014;21:103–20.

    Article  CAS  Google Scholar 

  85. Coles J et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35:568.

    Article  CAS  PubMed  Google Scholar 

  86. Robertson CS, Gopinath SP. SjvO2 monitoring in head-injured patients. J Neurotrauma. 1995. doi:10.1089/neu.1995.12.891.

    Google Scholar 

  87. Gopinath S et al. Jugular venous desaturation and outcome after head injury. J Neurol Neurosurg Psychiatry. 1994;57:717–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Calderon-Arnulphi M, Alaraj A, Slavin K. Near infrared technology in neuroscience: past, present and future. Neurol Res. 2009. doi:10.1179/174313209X383286.

    PubMed  Google Scholar 

  89. Taussky P, O’Neal B, Daugherty WP, et al. Validation of frontal near-infrared spectroscopy as noninvasive bedside monitoring for regional cerebral blood flow in brain-injured patients. Neurosurg Focus. 2012. At http://thejns.org/doi/abs/10.3171/2011.12.focus11280.

  90. Kim M et al. Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocrit Care. 2009;12:173–80.

    Article  Google Scholar 

  91. Shafer R, Brown A, Taylor C. Correlation between cerebral blood flow and oxygen saturation in patients with subarachnoid hemorrhage and traumatic brain injury. J NeuroInterventional Surg. 2011;3:395–8.

    Article  Google Scholar 

  92. Lewis SB, Myburgh JA, Thornton EL, et al. Cerebral oxygenation monitoring by near-infrared spectroscopy is not clinically useful in patients with severe closed-head injury: a comparison with jugular venous bulb oximetry. Crit Care Med. 1996;24:1334–8.

    Article  CAS  PubMed  Google Scholar 

  93. Rosenthal G, Furmanov A, Itshayek E, et al. Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury: clinical article. J Neurosurg. 2014. At http://thejns.org/doi/abs/10.3171/2013.12.JNS131089.

  94. Leal-Noval S et al. Invasive and noninvasive assessment of cerebral oxygenation in patients with severe traumatic brain injury. Intensive Care Med. 2010;36:1309–17.

    Article  CAS  PubMed  Google Scholar 

  95. Wintermark M et al. Comparative overview of brain perfusion imaging techniques. Stroke. 2005;36:e83–99.

    Article  PubMed  Google Scholar 

  96. Wintermark M et al. Admission perfusion CT: prognostic value in patients with severe head trauma1. Radiology. 2004;232:211220.

    Article  Google Scholar 

  97. Wintermark M, Thiran JP, Maeder P. Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. Am J Neuroradiol. 2001. At http://www.ajnr.org/content/22/5/905.short.

  98. Gillard JH et al. Assessment of quantitative computed tomographic cerebral perfusion imaging with H2(15)O positron emission tomography. Neurol Res. 2000;22:457–64.

    CAS  PubMed  Google Scholar 

  99. Kudo K, Terae S, Katoh C, et al. Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H215O positron emission tomography. Am J Neuroradiol. 2003. At http://www.ajnr.org/content/24/3/419.short.

  100. Roberts HC, Roberts TP, Dillon WP. CT perfusion flow assessment: ‘up and coming’ or ‘off and running’? AJNR Am J Neuroradiol. 2001;22:1018–9.

    CAS  PubMed  Google Scholar 

  101. Hoeffner E et al. Cerebral perfusion CT: technique and clinical applications. Radiology. 2004;231:632–44.

    Article  PubMed  Google Scholar 

  102. Rostami E, Engquist H, Enblad P. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care. Front Neurol. 2014;5. Rostami et al. provides an in depth review of various CBF imaging modalities, including recommendations for providers navigating this complex field.

  103. Brauer P et al. Correlation of transcranial Doppler sonography mean flow velocity with cerebral blood flow in patients with intracranial pathology. J Neurosurg Anesthesiol. 1998;10:80–5.

    Article  CAS  PubMed  Google Scholar 

  104. Démolis P, Tran Dinh YR, Giudicelli JF. Relationships between cerebral regional blood flow velocities and volumetric blood flows and their respective reactivities to acetazolamide. Stroke. 1996;27:1835–9.

    Article  PubMed  Google Scholar 

  105. White H, Venkatesh B. Applications of transcranial Doppler in the ICU: a review. Intensive Care Med. 2006;32:981–94.

    Article  PubMed  Google Scholar 

  106. Steiner L, Czosnyka M. Should we measure cerebral blood flow in head-injured patients? Br J Neurosurg. 2002;16:429439.

    Article  Google Scholar 

  107. Bellner J et al. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol. 2004;62:4551.

    Article  Google Scholar 

  108. Budohoski KP et al. Non-invasively estimated ICP pulse amplitude strongly correlates with outcome after TBI. Acta Neurochir Suppl. 2012;114:121–5.

    Article  PubMed  Google Scholar 

  109. Budohoski KP et al. Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal? Neurocrit Care. 2012;17:211–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar S. Akbik.

Ethics declarations

Conflict of Interest

Omar S. Akbik, Andrew P. Carlson, Mark Krasberg, and Howard Yonas declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neurotrauma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbik, O.S., Carlson, A.P., Krasberg, M. et al. The Utility of Cerebral Blood Flow Assessment in TBI. Curr Neurol Neurosci Rep 16, 72 (2016). https://doi.org/10.1007/s11910-016-0672-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-016-0672-3

Keywords

Navigation