Skip to main content

Advertisement

Log in

Sports-Related Concussion Testing

  • Neurotrauma (J Levine, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Due to the recent focus on concussion in sports, a number of tests have been developed to diagnose and manage concussion. While each test measures different brain functions, no single test has been shown to quickly and reliably assess concussion in all cases. In addition, most of the current concussion tests have not been validated by scientific investigation. This review identifies the pros and cons of the most commonly used noninvasive tests for concussion in order to provide a more complete picture of the resources that are available for concussion testing. The potential utility of research tools such as the head impact telemetry system, advanced magnetic resonance imaging protocols, and biomarkers are discussed in the context of the currently employed tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Meehan WP, Micheli LJ. Concussion results in deficits in neurocognitive functioning. Clin Sports Med. 2011;30:28–8.

    Google Scholar 

  2. Guskiewicz KM, McCrea M, Marshall SW, et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003;290:2549–55.

    Article  PubMed  CAS  Google Scholar 

  3. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21:375–8.

    Article  PubMed  Google Scholar 

  4. Concussion (mild traumatic brain injury) and the team physician: a consensus statement. Med Sci Sports Exerc. 2006, 38:395–399.

  5. McCrory P, Johnston K, Meeuwisse W, et al. Summary and agreement statement of the 2nd international conference on concussion in sport, Prague 2004. Br J Sports Med. 2005;39:196–204.

    PubMed  CAS  Google Scholar 

  6. Daneshvar DH, Nowinski CJ, McKee AC, Cantu RC. The epidemiology of sport-related concussion. Clin Sports Med. 2011;30:1–17.

    Article  PubMed  Google Scholar 

  7. • Galetta KM, Brandes LE, Maki K, et al. The King-Devick test and sports-related concussion: study of a rapid visual screening tool in a collegiate cohort. J Neurol Sci. 2011;309:34–9. This identifies the need for a rapid sideline screening tool and proposes one possible test, the King-Devick test.

    Article  PubMed  Google Scholar 

  8. Halstead ME, Walter KD. Sports-related concussion in children and adolescents. Pediatrics. 2010;126:597–615.

    Article  PubMed  Google Scholar 

  9. Sim A, Terryberry-Spohr L, Wilson KR. Prolonged recovery of memory functioning after mild traumatic brain injury in adolescent athletes. J Neurosurg. 2008;108:511–6.

    Article  PubMed  Google Scholar 

  10. Gavett BE, Stern RA, McKee AC. Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin Sports Med. 2011;30:179–88.

    Article  PubMed  Google Scholar 

  11. Guskiewicz KM, Weaver NL, Padua DA, Garrett WE. Epidemiology of concussion in collegiate and high school football players. Am J Sports Med. 2000;28:643–50.

    PubMed  CAS  Google Scholar 

  12. Meaney DF, Smith DH. Biomechanics of concussion. Clin Sports Med. 2011;30:19–31.

    Article  PubMed  Google Scholar 

  13. Boden BP, Tacchetti RL, Cantu RC, et al. Catestrophic head injuries in high school and college football players. Am J Sports. 2007;35:1075–81.

    Article  Google Scholar 

  14. Notebaert AJ, Guskiewicz KM. Current trends in athletic training practice for concussion assessment and management. J Athl Train. 2005;40:320–5.

    PubMed  Google Scholar 

  15. Covassin T, Elbin 3rd R, Stiller-Ostrowski J. Current sport-related concussion teaching and clinical practices of sports medicine professionals. J Athl Train. 2009;44:400–4.

    Article  PubMed  Google Scholar 

  16. McCrory P, Meeuwisse W, Johnston K, et al. Consensus statement on Concussion in Sport 3rd International Conference on Concussion in Sport held in Zurich, November 2008. Clin J Sport Med. 2009;19:185–200.

    Article  PubMed  Google Scholar 

  17. Halstead ME, Walter KD, and the Council on Sports Medicine and Fitness. Sport-related concussion in children and adolescents. Pediatrics. 2010;126:597.

    Article  PubMed  Google Scholar 

  18. McCrory P, Meeuwisse W, Johnston K, et al. Consensus statement on Concussion in Sport 3rd International Conference on Concussion in Sport held in Zurich, November 2008. Clin J Sport Med. 2009;19:185–200.

    Article  PubMed  Google Scholar 

  19. McCrea M. Standardized mental status testing of acute concussion. Clin J Sport Med. 2001;11:176–81.

    Article  PubMed  CAS  Google Scholar 

  20. Coldren RL, Kelly MP, Parish RV, Dretsch M, Russell ML. Evaluation of the military acute concussion evaluation for use in combat operations more than 12 hours after injury. Mil Med. 2010;175:477–81.

    PubMed  Google Scholar 

  21. King NS, Crawford S, Wenden FJ, Moss NEG, Wade DT. The rivermead post concussion symptoms questionnaire: a measure of symptoms commonly experienced after head injury and its reliability. J Neurol. 1995;242:587–92.

    Article  PubMed  CAS  Google Scholar 

  22. Potter S, Leigh E, Wade D, Fleminger S. The rivermead post concussion symptoms questionnaire. J Neurol. 2006;253:1603–14.

    Article  PubMed  Google Scholar 

  23. Lovell MR, Collins MW. Neuropsychological assessment of the college football player. J Head Trauma Rehabil. 1998;13:9–26.

    Article  PubMed  CAS  Google Scholar 

  24. Lovell MR, Iverson GL, Collins MW, McKeag D, Maroon JC. Does loss of consciousness predict neuropsychological decrements after concussion? Clin J Sports Med. 1999;9:193–8.

    Article  CAS  Google Scholar 

  25. Putukian M. The acute symptoms of sport-related concussion: diagnosis and on-field management. Clin Sports Med. 2011;30:49–61.

    Article  PubMed  Google Scholar 

  26. • Alla S, Sullivan SJ, Hale L, et al. Self-report scales/checklists for the measurement of concussion symptoms: a systematic review. Br J Sports Med. 2009;43 Suppl 1:i3–i12. This systematically analyzes the most commonly used symptom scales and checklists for diagnosing concussion. It also emphasizes the unmet need for scientific scrutiny to support these scales and checklists.

    Article  PubMed  Google Scholar 

  27. Canadian Center for Ethics in Sports: Sport Concussion Assessment Tool 2. Available at http://www.cces.ca/files/pdfs/SCAT2%5B1%5D.pdf. Accessed August 2011.

  28. Piland SG, Motl RW, Ferrara MS, Peterson CL. Evidence for the factorial and construct validity of a self-report concussion symptoms scale. J Athl Train. 2003;38:104–12.

    PubMed  Google Scholar 

  29. Piland SG, Motl RW, Guskiewicz KM, McCrea M, Ferrara MS. Structural validity of a self-report concussion-related symptom scale. Med Sci Sports Exerc. 2006;38:27–32.

    Article  PubMed  Google Scholar 

  30. McCrea M, Barr WB, Guskiewicz K, et al. Standard regression-based methods for measuring recovery after sport-related concussion. J Int Neuropsychol Soc. 2005;11:58–69.

    Article  PubMed  Google Scholar 

  31. Maddocks Dl, Dicker GD, Saling MM. The assessment of orientation following concussion in athletes. Clin J Sport Med. 1995;5:32–3.

    Article  PubMed  CAS  Google Scholar 

  32. Schneiders AG, Sullivan SJ, Handcock P, et al.: Sports concussion assessment: the effect of exercise on dynamic and static balance. Scand J Med Sci Sports 2010, Epub ahead of print.

  33. Hunt TN, Ferrara MS, Bornstein RA, et al. The reliability of the modified balance error scoring system. Clin J Sport Med. 2009;19:471–5.

    Article  PubMed  Google Scholar 

  34. Broglio SP, Schnebel B, Sosnoff JJ, et al. Biomechanical properties of concussions in high school football. Med Sci Sports Exerc. 2010;42:2064–71.

    Article  PubMed  Google Scholar 

  35. Broglio SP, Eckner JT, Surma T, Kutcher JS: Post-concussion cognitive declines and symptomatology are not related to concussion biomechanics in high school football players. J Neurotrauma 2011, Epub ahead of print.

  36. • Talavage TM, Nauman E, Breedlove EL, et al.: Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma 2010, Epub ahead of print. This shows that an accrual of sub-concussive impact can lead to brain injury and concussion-like symptoms. It also compares the results of the HITS, ImPACT, and fMRI.

  37. Guskiewicz KM, Mihalik JP, Shankar V, et al. Measurement of head impacts in collegiate football players: relationship between head impact biomechanics and acute clinical outcome after concussion. Neurosurgery. 2007;61:1244–52.

    Article  PubMed  Google Scholar 

  38. McAllister TW, Flashman LA, Maerlender A, et al. Cognitive effects of one season of head impacts in a cohort of collegiate contact sport athletes. Neurology. 2012;78:1777–84.

    Article  PubMed  CAS  Google Scholar 

  39. Deibert E, Kryscio R. How many HITS are too many? The use of accelerometers to study sports-related concussion. Neurology. 2012;78:1712–3.

    Article  PubMed  Google Scholar 

  40. McCrea M, Kelly JP, Randolph C, et al. Standardized assessment of concussion (SAC): on-site mental status evaluation of the athlete. J Head Trauma Rehabil. 1998;13:27–35.

    Article  PubMed  CAS  Google Scholar 

  41. McCrea M, Kelly JP, Kluge J, et al. Standardized assessment of concussion in football players. Neurology. 1997;48:586–8.

    Article  PubMed  CAS  Google Scholar 

  42. McCrea M. Standardized mental status testing on the sideline after sport-related concussion. J Athl Train. 2001;36:274–9.

    PubMed  Google Scholar 

  43. Valovich McLeod TC, Barr WB, McCrea M, Guskiewicz KM. Psychometric and measurement properties of concussion assessment tools in youth sports. J Athl Train. 2006;41:399–408.

    PubMed  Google Scholar 

  44. Valovich TC, Perrin DH, Gansneder BM. Repeat administration elicits a practice effect with the balance error scoring system but not with the standardized assessment of concussion in high school athletes. J Athl Train. 2003;38:51–6.

    PubMed  Google Scholar 

  45. Grubenhoff JA, Kirkwood M, Gao D, Deakyne S, Wathen J. Evaluation of the standardized assessment of concussion in a pediatric emergency department. Pediatrics. 2010;126:688–95.

    Article  PubMed  Google Scholar 

  46. Galetta KM, Barrett J, Allen M, et al. The King-Devick test as a determinant of head trauma and concussion in boxers and MMA fighters. Neurology. 2011;76:1456–62.

    Article  PubMed  CAS  Google Scholar 

  47. Heitger MH, Jones RD, Macleod AD, et al. Impaired eye movements in post-concussion syndrome indicate suboptimal brain function beyond the influence of depression, malingering or intellectual ability. Brain. 2010;133:2850–70.

    Google Scholar 

  48. • Guskiewicz KM. Balance assessment in the management of sport-related concussion. Clin Sports Med. 2011;30:89–102. This provides background on balance deficits following mTBI and examines the BESS.

    Article  PubMed  Google Scholar 

  49. McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003;290:2556–63.

    Article  PubMed  CAS  Google Scholar 

  50. Guskiewicz KM, Ross SE, Marshall SW. Postural stability and neuropsychological deficits after concussion in collegiate athletes. J Athl Train. 2001;36:263–73.

    PubMed  Google Scholar 

  51. Riemann BL, Guskiewicz KM. Effects of mild head injury on postural stability as measured through clinical balance testing. J Athl Train. 2000;35:19–25.

    PubMed  CAS  Google Scholar 

  52. Broglio SP, Puetz TW. The effect of sport concussion on neurocognitive function, self-report symptoms and postural control: a meta-analysis. Sports Med. 2008;38:53–67.

    Article  PubMed  Google Scholar 

  53. Finnoff JT, Peterson VJ, Hollman JH, Smith J. Intrarater and interrater reliability of the Balance Error Scoring System (BESS). PM&R. 2009;1:50–4.

    Article  Google Scholar 

  54. Susco TM, Valovich McLeod TC, Gansneder BM, et al. Balance recovers within 20 minutes after exertion as measured by the Balance Error Scoring System. J Athl Train. 2004;39:241–6.

    PubMed  Google Scholar 

  55. Wilkins JC, Valovich McLeod TC, Perrin DH, et al. Performance on the balance error scoring system decreases after fatigue. J Athl Train. 2004;39:156–61.

    PubMed  Google Scholar 

  56. Bressel E, Yonker JC, Kras J, et al. Comparison of static and dynamic balance in female collegiate soccer, basketball, and gymnastics athletes. J Athl Train. 2007;42:42–6.

    PubMed  Google Scholar 

  57. Docherty CL, Valovich-McLeod TC, Shultz SJ. Postural control deficits in participants with functional ankle instability as measured by the balance error scoring system. Clin J Sport Med. 2006;16:203–8.

    Article  PubMed  Google Scholar 

  58. Valovich McLeod TC, Perrin DH, Guskiewicz KM, et al. Serial administration of clinical concussion assessments and learning effects in healthy young athletes. Clin J Sport Med. 2004;14:287–95.

    Article  PubMed  Google Scholar 

  59. • Maerlender A, Flashman L, Kessler A, et al. Examination of the construct validity of ImPACT computerized test, traditional, and experimental neuropsychological measures. Clin Neuropsychol. 2010;24:1309–25. This analyzes the validity of the ImPACT test and emphasizes its role as a screening tool rather than an all-inclusive concussion management tool.

    PubMed  CAS  Google Scholar 

  60. Iverson GL, Lovell MR, Collins MW. Interpreting change on ImPACT following sport concussion. Clin Neuropsychol. 2003;17:460–7.

    PubMed  Google Scholar 

  61. Randolph C. Baseline neuropsychological testing in managing sport-related concussion: does it modify risk? Curr Sports Med Rep. 2011;10:21–6.

    PubMed  Google Scholar 

  62. Broglio SP, Ferrara MS, Macciocchi SN, et al. Test-retest reliability of computerized concussion assessment programs. J Athl Train. 2007;42:509–14.

    PubMed  Google Scholar 

  63. Van Kampen DA, Lovell MR, Pardini JE, et al. The "value added" of neurocognitive testing after sports-related concussion. Am J Sports Med. 2006;34:1630–5.

    Article  PubMed  Google Scholar 

  64. Collie A, Makdissi M, Maruff P, Bennell K, McCrory P. Cognition in the days following concussion: comparison of symptomatic versus asymptomatic athletes. J Neurol Neurosurg Psychiatry. 2006;77:241–5.

    Article  PubMed  CAS  Google Scholar 

  65. Makdissi M, Darby D, Maruff P, Ugoni A, Brukner P, McCrory PR. Natural history of concussion in sport: markers of severity and implications for management. Am J Sports Med. 2010;38:464–71.

    Article  PubMed  Google Scholar 

  66. Maruff P, Thomas E, Cysique L, Brew B, Collie A, Snyder P, et al. Validity of the CogState brief battery: relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Arch Clin Neuropsychol. 2009;24:165–78.

    Article  PubMed  Google Scholar 

  67. Moriarity J, Collie A, Olson D, Buchanan J, Leary P, McStephen M, et al. A prospective controlled study of cognitive function during an amateur boxing tournament. Neurology. 2004;62:1497–502.

    Article  PubMed  CAS  Google Scholar 

  68. Straume-Naesheim TM, Andersen TE, Bahr R. Reproducibility of computer based neuropsychological testing among Norwegian elite football players. Br J Sports Med. 2005;39 Suppl 1:i64–9.

    Article  PubMed  Google Scholar 

  69. Straume-Naesheim TM, Andersen TE, Holme IMK, McIntosh AS, Dvorak J, Bahr R. Do minor head impacts in soccer cause concussive injury? A prospective case–control study. Neurosurgery. 2009;64:719–25.

    Article  PubMed  Google Scholar 

  70. Cernich A, Reeves D, Sun W, Bleiberg J. Automated neuropsychological assessment metrics sports medicine battery. Arch Clin Neuropsychol. 2007;22 Suppl 1:S101–14.

    Article  PubMed  Google Scholar 

  71. Bleiberg J, Kane RL, Reeves DL, Garmoe WS, Halpern E. Factor analysis of computerized and traditional tests used in mild brain injury research. Clin Neuropsychol. 2000;14:287–94.

    PubMed  CAS  Google Scholar 

  72. Pulsipher DT, Campbell RA, Thoma R, King JH. A critical review of neuroimaging applications in sports concussion. Curr Sports Med Rep. 2011;10:14–20.

    PubMed  Google Scholar 

  73. Zimmerman RA, Bilaniuk LT, Hackney DB, et al. Head injury: early results of comparing CT and high-field MR. Am J Roentgenol. 1986;147:1215–22.

    CAS  Google Scholar 

  74. Nandigam RN, Viswanathan A, Delgado P, et al. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. Am J Neuroradiol. 2009;30:338–43.

    Article  PubMed  CAS  Google Scholar 

  75. Maruta J, Lee SW, Jacobs EF, Ghajar J. A unified science of concussion. Ann NY Acad Sci. 2010;1208:58–66.

    Article  PubMed  Google Scholar 

  76. Davis GA, Iverson GL, Guskiewicz KM, et al. Contributions of neuroimaging, balance testing, electrophysiology and blood markers to the assessment of sport-related concussion. Br J Sports Med. 2009;43 Suppl 1:i36–45.

    Article  PubMed  Google Scholar 

  77. Cubon VA, Putukian M, Boyer C, Dettwiler A. A diffusion tensor imaging study on the white matter skeleton in individuals with sports-related concussion. J Neurotrauma. 2011;28:189–201.

    Article  PubMed  Google Scholar 

  78. Slobounov SM, Gay M, Zhang K, et al. Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. Neuroimage. 2011;55:1716–27.

    Article  PubMed  CAS  Google Scholar 

  79. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4:316–29.

    Article  PubMed  Google Scholar 

  80. Fitzgerald DB, Crosson BA. Diffusion weighted imaging and neuropsychological correlates in adults with mild traumatic brain injury. Int J Psychophysiol. 2011;82:79–85.

    Article  PubMed  Google Scholar 

  81. LeBihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging: concepts and applications. Magn Reson Imaging. 2001;13:534–46.

    Article  CAS  Google Scholar 

  82. •• Prabhu SP. The role of neuroimaging in sport-related concussion. Clin Sports Med. 2011;30:103–14. This provides an in-depth investigation of neuroimaging tools, with a focus on the use of advanced functional imaging techniques in sports concussion.

    Article  PubMed  Google Scholar 

  83. Pfefferbaum A, Sullivan EV, Hedehus M, et al. Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med. 2000;44:259–68.

    Article  PubMed  CAS  Google Scholar 

  84. Smits M, Houston GC, Dippel DW, et al. Microstructural brain injury in post-concussion syndrome after minor head injury. Neuroradiology. 2011;53:553–63.

    Article  PubMed  Google Scholar 

  85. Kennedy MR, Wozniak JR, Muetzel RL, et al. White matter and neurocognitive changes in adults with chronic traumatic brain injury. J Int Neuropsychol Soc. 2009;15:130–6.

    Article  PubMed  Google Scholar 

  86. Kinnunen KM, Greenwood R, Powell JH, et al. White matter damage and cognitive impairment after traumatic brain injury. Brain. 2011;134:449–63.

    Article  PubMed  Google Scholar 

  87. McAllister TW, Saykin AJ, Flashman LA, et al. Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology. 1999;53:1300–8.

    Article  PubMed  CAS  Google Scholar 

  88. McAllister TW, Sparling MB, Flashman LA, Guerin SJ, Mamourian AC, Saykin AJ. Differential working memory load effects after mild traumatic brain injury. Neuroimage. 2001;14:1004–12.

    Article  PubMed  CAS  Google Scholar 

  89. Chen JK, Johnston KM, Petrides M, Ptito A. Recovery from mild head injury in sports: evidence from serial functional magnetic resonance imaging studies in male athletes. Clin J Sport Med. 2008;18:241–7.

    Article  PubMed  Google Scholar 

  90. Chen JK, Johnston KM, Frey S, Petrides M, Worsley K, Ptito A. Functional abnormalities in symptomatic concussed athletes: an fMRI study. Neuroimage. 2004;22:68–82.

    Article  PubMed  Google Scholar 

  91. Jantzen KJ, Anderson B, Steinberg FL, Kelso JA. A prospective functional MR imaging study of mild traumatic brain injury in college football players. AJNR Am J Neuroradiol. 2004;25:738–45.

    PubMed  Google Scholar 

  92. Slobounov SM, Zhang K, Pennell D, Ray W, Johnson B, Sebastianelli W. Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study. Experimental Brain Research Experimentelle Hirnforschung Experimentation Cerebrale. 2010;202:341–54.

    Article  PubMed  Google Scholar 

  93. Chen JK, Johnston KM, Petrides M, Ptito A. Recovery from mild head injury in sports: evidence from serial functional magnetic resonance imaging studies in male athletes. Clin J Sport Med. 2008;18:241–7.

    Article  PubMed  Google Scholar 

  94. Chen JK, Johnston KM, Frey S, Petrides M, Worsley K, Ptito A. Functional abnormalities in symptomatic concussed athletes: an fMRI study. Neuroimage. 2004;22:68–82.

    Article  PubMed  Google Scholar 

  95. Pardini JE, Pardini DA, Becker JT, et al. Postconcussive symptoms are associated with compensatory cortical recruitment during a working memory task. Neurosurgery. 2010;67:1020–7.

    Article  PubMed  Google Scholar 

  96. Lovell MR, Pardini JE, Welling JS, et al. Functional brain abnormalities are related to clinical recovery and time to return to play in athletes. Neurosurgery. 2007;61:352–60.

    Article  PubMed  Google Scholar 

  97. Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008;453:869–78.

    Article  PubMed  CAS  Google Scholar 

  98. Aguirre GK, Zarahn E, D'Esposito M. The variability of human, BOLD hemodynamic responses. Neuroimage. 1998;8:360–9.

    Article  PubMed  CAS  Google Scholar 

  99. Alessandri B, Doppenberg E, Zauner A, et al. Evidence for time-dependent glutamate-mediated glycolysis in head-injured patients: a microdialysis study. Acta Neurochir Suppl. 1999;75:25–30.

    Article  PubMed  CAS  Google Scholar 

  100. Gasparovic C, Yeo R, Mannell M, et al. Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: a 1 H-magnetic resonance spectroscopy study. J Neurotrauma. 2009;26:1635–43.

    Article  PubMed  Google Scholar 

  101. Vagnozzi R, Signoretti S, Cristofori L, et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain. 2010;133:3232–42.

    Article  PubMed  Google Scholar 

  102. Peskind ER, Petrie EC, Cross DJ, et al. Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. Neuroimage. 2011;54 Suppl 1:S76–82.

    Article  PubMed  Google Scholar 

  103. Newberg AB, Alavi A. Neuroimaging in patients with head injury. Semin Nucl Med. 2003;33:136–47.

    Article  PubMed  Google Scholar 

  104. Langfitt TW, Obrist WD, Alavi A, et al. Computerized tomography, magnetic resonance imaging, and positron emission tomography in the study of brain trauma. J Neurosurg. 1986;64:760–7.

    Article  PubMed  CAS  Google Scholar 

  105. Abdel-Dayem HM, Abu-Judeh H, Kumar M, et al. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury. Clin Nucl Med. 1998;23:309.

    Article  PubMed  CAS  Google Scholar 

  106. Shiina G, Onuma T, Kameyama M, et al. Sequential assessment of cerebral blood flow in diffuse brain injury by 123I-iodoamphetamine single-photon emission CT. Am J Neuroradiol. 1998;19:297–302.

    PubMed  CAS  Google Scholar 

  107. Abu-Judeh HH, Singh M, Masdeu JC, Abdel-Dayem HM. Discordance between FDG uptake and technetium-99 m-HMPAO brain perfusion in acute traumatic brain injury. J Nucl Med. 1998;39:1357.

    PubMed  CAS  Google Scholar 

  108. Topolovec VJ, Pollmann-Mudryj MA, Ouchterlony D, et al. The value of serum biomarkers in prediction models of outcome after mild traumatic brain injury. J Trauma. 2011;71:S478–86.

    Article  CAS  Google Scholar 

  109. Townend W, Ingebrigtsen T. Head injury outcome prediction: a role for protein S-100B? Injury. 2006;37:1098–108.

    Article  PubMed  Google Scholar 

  110. Sawauchi S, Taya K, Murakami S, et al. Serum S-100B protein and neuron-specific enolase after traumatic brain injury. No Shinkei Geka. 2005;33:1073–80.

    PubMed  CAS  Google Scholar 

  111. Stålnacke BM, Björnstig U, Karlsson K, Sojka P. One-year follow-up of mild traumatic brain injury: post-concussion symptoms, disabilities and life satisfaction in relation to serum levels of S-100B and neurone-specific enolase in acute phase. J Rehabil Med. 2005;37:300–5.

    Article  PubMed  Google Scholar 

  112. Kleinert K, Schleich F, Biasca N, Simmen HP. [Is there a correlation between S100 beta and post-concussion symptoms after mild traumatic brain injury?]. Zentralbl Chir. 2010;135:277–8.

    Article  PubMed  CAS  Google Scholar 

  113. Begaz T, Kyriacou DN, Segal J, Bazarian JJ. Serum biochemical markers for post-concussion syndrome in patients with mild traumatic brain injury. J Neurotrauma. 2006;23:1201–10.

    Article  PubMed  Google Scholar 

  114. Bazarian JJ, Zemlan FP, Mookerjee S, Stigbrand T. Serum S-100B and cleaved-tau are poor predictors of long-term outcome after mild traumatic brain injury. Brain Inj. 2006;20:759–65.

    Article  PubMed  Google Scholar 

  115. de Boussard CN, Lundin A, Karlstedt D, et al. S100 and cognitive impairment after mild traumatic brain injury. J Rehabil Med. 2005;37:53–7.

    Article  PubMed  Google Scholar 

  116. Zhou W, Xu D, Peng X, et al. Meta-analysis of APOE4 allele and outcome after traumatic brain injury. J Neurotrauma. 2008;25:279–90.

    Article  PubMed  Google Scholar 

  117. Kristman VL, Tator CH, Kreiger N, et al. Does the apolipoprotein epsilon 4 allele predispose varsity athletes to concussion? A prospective cohort study. Clin J Sport Med. 2008;18:322–8.

    Article  PubMed  Google Scholar 

  118. Tierney RT, Mansell JL, Higgins M. Apolipoprotein E genotype and concussion in college athletes. Clin J Sport Med. 2010;20:464–8.

    Article  PubMed  Google Scholar 

  119. McCrory P, Meeuwisse W, Johnston K, et al. Consensus statement on Concussion in Sport 3rd International Conference on Concussion in Sport held in Zurich, November 2008. Clin J Sport Med. 2009;19:185–200.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. Balcer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dziemianowicz, M.S., Kirschen, M.P., Pukenas, B.A. et al. Sports-Related Concussion Testing. Curr Neurol Neurosci Rep 12, 547–559 (2012). https://doi.org/10.1007/s11910-012-0299-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-012-0299-y

Keywords

Navigation