Skip to main content
Log in

Cardiopulmonary complications of brain injury

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Cardiac and pulmonary complications following acute neurologic injury are common and may be a cause of morbidity and mortality in this population. Examples include hypertension, arrhythmias, ventricular dysfunction, pulmonary edema, shock, and sudden death. Primary neurologic events are represented by stroke, subarachnoid hemorrhage, traumatic brain injury, epilepsy, and encephalitis and have been frequently reported. Given the high frequency of these conditions, it is important for physicians to become familiar with their pathophysiology, allowing for more prompt and appropriate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Silver FL, Norris JW, Lewis AJ, Hachinski VC: Early mortality following stroke: a prospective review. Stroke 1984, 15:492–496.

    PubMed  CAS  Google Scholar 

  2. Mayer SA, Lin J, Homma S, et al.: Myocardial injury and left ventricular performance after subarachnoid hemorrhage. Stroke 1999, 30:780–786.

    PubMed  CAS  Google Scholar 

  3. Dimant J, Grob D: Electrocardiographic changes and myocardial damage in patients with acute cerebrovascular accidents. Stroke 1977, 8:448–455.

    PubMed  CAS  Google Scholar 

  4. Brander L, Weinberger D, Henzen C: Heart and brain: a case of focal myocytolysis in severe pneumococcal meningoencephalitis with review of the contemporary literature. Anaesth Intensive Care 2003, 31:202–207.

    PubMed  CAS  Google Scholar 

  5. Prager P, Nolan M, Andrews IP: Neurogenic pulmonary edema in enterovirus 71 encephalitis is not uniformly fatal but causes severe morbidity in survivors. Pediatr Crit Care Med 2003, 4:377–381.

    Article  PubMed  Google Scholar 

  6. Kantor HL, Krishnan SC: Cardiac problems in patients with neurological disease. Cardiol Clin 1995, 13:179–208.

    PubMed  CAS  Google Scholar 

  7. Cushing H: The blood pressure reaction of acute cerebral compression illustrated by cases of intracranial hemorrhage. Am J Med Sci 1903, 125:1017–1044.

    Article  Google Scholar 

  8. Shanahan WT: Acute pulmonary edema as a complication of epileptic seizures. NY Med J 1908, 37:54–56.

    Google Scholar 

  9. Bulsara KR, McGirt MJ, Liao L, et al.: Use of the peak troponin value to differentiate myocardial infarction from reversible neurogenic left ventricular dysfunction associated with aneurysmal subarachnoid hemorrhage. J Neurosurg 2003, 98:524–528. First study suggesting guidelines to differentiate stunned myocardium from ischemic heart disease allowing for earlier surgical intervention. However, it was based on a small set of patients and further studies are necessary.

    PubMed  Google Scholar 

  10. Kolin A, Norris J: Myocardial damage from acute cerebral lesions. Stroke 1984, 15:990–993.

    PubMed  CAS  Google Scholar 

  11. Doshi R, Neil-Dwyer G: A clinicopathological study of patients following a subarachnoid hemorrhage. J Neurosurg 1980, 52:295–301.

    PubMed  CAS  Google Scholar 

  12. Burch GE, Sun SC, Calcolough H, et al.: Acute myocardial lesions following experimentally induced intracranial hemorrhage in mice: a histologic and histochemical study. Arch Pathol 1967, 84:517–521.

    PubMed  CAS  Google Scholar 

  13. Kono T, Morita H, Kuroiwa T, et al.: Left ventricular wall motion abnormalities in patients with subarachnoid hemorrhage: neurogenic stunned myocardium. J Am Coll Cardiol 1994, 24:636–639.

    Article  PubMed  CAS  Google Scholar 

  14. Malik AB: Mechanism of neurogenic pulmonary edema. Circ Res 1985, 57:1–18.

    PubMed  CAS  Google Scholar 

  15. Kenedi I, Csanda E: Electrographic changes in response to electrical stimulation of the cerebral cortex. Acta Physiol Acad Sci Hung 1959, 16:165–170.

    PubMed  CAS  Google Scholar 

  16. Oppenheimer M, Hopkins D: Suprabulbar neuronal regulation of the heart. In Neurocardiology. Edited by Armour JA and Ardell JL. New York: Oxford University Press; 1994:309–342.

    Google Scholar 

  17. Oppenheimer SM, Cechetto DF: Cardiac chronotropic organization of the rat insular cortex. Brain Res 1990, 533:66–72.

    Article  PubMed  CAS  Google Scholar 

  18. Hachinski VC, Oppenheimer SM, Wilson JX, et al.: Asymmetry of sympathetic consequences of experimental stroke. Arch Neurol 1992, 49:697–702.

    PubMed  CAS  Google Scholar 

  19. Wittstein IS, Thiemann DR, Lima JA, et al.: Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 2005, 352:539–548. This article provides evidence that myocardial stunning seen after sudden emotional stress is similar in character and mechanism to the myocardial stunning seen after neurologic injury. It provides further backbone to the theory that sympathetic discharge and not myocardial ischemia is responsible for the myocardial injury.

    Article  PubMed  CAS  Google Scholar 

  20. Melville KI, Blum B, Shister HE, Silver MD: Cardiac ischemic changes and arrhythmias induced by hypothalamic stimulation. Am J Cardiol 1963, 12:781.

    Article  PubMed  CAS  Google Scholar 

  21. Spencer SE, Sawyer WB, Loewy AD: L-glutamate mapping of cardioreactive areas in the rat posterior hypothalamus. Brain Res 1990, 511:149.

    Article  PubMed  CAS  Google Scholar 

  22. Gelsema AJ, Roe MJ, Calaresu FR: Neurally mediated cardiovascular responses to stimulation of cell bodies in the hypothalamus of the rat. Brain Res 1989, 482:67–72.

    Article  PubMed  CAS  Google Scholar 

  23. Weinberg SJ, Fuster JM: Electrocardiographic changes produced by localized hypothalamic stimulations. Ann Intern Med 1960, 53:332–334.

    PubMed  CAS  Google Scholar 

  24. Verrier L, Antzelevitch C: Autonomic aspects of arrhythmogenesis: the enduring and the new. Curr Opin Cardiol 2004, 19:2–11.

    Article  PubMed  Google Scholar 

  25. Martin H: The hypothalamus and the regulation of endocrine and visceral functions. In Neuroanatomy Text and Atlas, edn 2. Edited by Martin JH. Stamford, CT: Appleton & Lange; 1996:419–445.

    Google Scholar 

  26. Cropp C, Manning G: Electrocardiographic change simulating myocardial ischemia and infarction associated with spontaneous intracranial hemorrhage. Circulation 1960, 22:24–27.

    Google Scholar 

  27. Andreoli A, di Pasquale G, Pinelli G, et al.: Subarachnoid hemorrhage: frequency and severity of cardiac arrhythmias. A survey of 70 cases studied in the acute phase. Stroke 1987, 18:558–564.

    PubMed  CAS  Google Scholar 

  28. Mayer SA, Lin J, Homma S, et al.: Myocardial injury and left ventricular performance after subarachnoid hemorrhage. Stroke 1999, 30:780–786.

    PubMed  CAS  Google Scholar 

  29. Brouwers PJ, Wijdicks EF, Hasan D, et al.: Serial electrocardiographic recording in aneurysmal subarachnoid hemorrhage. Stroke 1989, 20:1162–1167.

    PubMed  CAS  Google Scholar 

  30. Salvati M, Cosentino F, Artico M, et al.: Electrocardiographic changes in subarachnoid hemorrhage secondary to cerebral aneurysm. Report of 70 cases. Ital J Neurol Sci 1992, 13:409–413.

    Article  PubMed  CAS  Google Scholar 

  31. Burch GE, Meyers R, Abildskov JA: A new electrocardiogram pattern observed in cerebrovascular accidents. Circulation 1954, 9:719–723.

    PubMed  CAS  Google Scholar 

  32. Greenhoot JA, Reichenbach DD: Cardiac injury and subarachnoid hemorrhage. A clinical, pathological and physiological correlation. J Neurosurg 1969, 30:521–531.

    PubMed  CAS  Google Scholar 

  33. Zaroff JG, Rordorf GA, Titus JS, et al.: Regional myocardial perfusion after experimental subarachnoid hemorrhage. Stroke 2000, 31:1136–1143.

    PubMed  CAS  Google Scholar 

  34. Jain R, Deveikis J, Thompson BG: Management of patients with stunned myocardium associated with subarachnoid hemorrhage. Am J Neuroradiol 2004, 25:126–129.

    PubMed  Google Scholar 

  35. Hammermeister KE, Reichenbach DD: QRS changes, pulmonary edema and myocardial necrosis associated with subarachnoid hemorrhage. Am Heart J 1969, 78:94–100.

    Article  PubMed  CAS  Google Scholar 

  36. Norris JW, Hachinski VC, Myers MG, et al.: Serum cardiac enzymes in stroke. Stroke 1979, 10:548–553.

    PubMed  CAS  Google Scholar 

  37. Sommargren CE, Zaroff JG, Banki N, Drew BJ: Electrocardiographic repolarization abnormalities in subarachnoid hemorrhage. J Electrocardiol 2002, 35:257–262.

    Article  PubMed  Google Scholar 

  38. Samuels MA: Neurogenic heart disease: a unifying hypothesis. Am J Cardiol 1987, 60:15–19.

    Article  Google Scholar 

  39. Lown B, Verrier R: Neural activity and ventricular fibrillation. N Engl J Med 1976, 294:1165–1170.

    Article  PubMed  CAS  Google Scholar 

  40. Levy N, Blattberg B: Effect of vagal stimulation on the overflow of norepinephrine into the coronary sinus during cardiac sympathetic nerve stimulation in the dog. Circ Res 1976, 38:81–84.

    PubMed  CAS  Google Scholar 

  41. Kolman S, Verrier L, Lown B: The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: role of sympathetic-parasympathetic interactions. Circulation 1975, 52:578–585.

    PubMed  CAS  Google Scholar 

  42. Massetani R, Strata G, Galli R, et al.: Alteration of cardiac function in patients with temporal lobe epilepsy: different roles of EEG-ECG monitoring and spectral analysis of RR variability. Epilepsia 1997, 38:363–369.

    Article  PubMed  CAS  Google Scholar 

  43. Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC: Cardiovascular effects of human insular cortex stimulation. Neurology 1992, 42:1727–1732.

    PubMed  CAS  Google Scholar 

  44. Tokgozoglu SL, Batur MK, Topuoglu MA, et al.: Effects of stroke localization on cardiac autonomic balance and sudden death. Stroke 1999, 30:1307–1311.

    PubMed  CAS  Google Scholar 

  45. Kulshreshtha N, Zhang ZH, Oppenheimer SM: Effects of insular lesions on the rat baroreceptor reflex. Soc Neurosci Abstracts 1996, 22:157.

    Google Scholar 

  46. Oppenheimer M, Martin M, Kedem G: Left insular cortex lesions perturb cardiac autonomic tone. Clin Auton Res 1996, 6:131–140.

    Article  PubMed  CAS  Google Scholar 

  47. Oppenheimer SM, Wilson JX, Guiraudon C, Cechetto DF: Insular cortex stimulation produces lethal cardiac arrhythmias: a mechanism of sudden death? Brain Res 1991, 550:115–121.

    Article  PubMed  CAS  Google Scholar 

  48. Darbin O, Casebeer DJ, Naritoku DK: Cardiac dysrhythmia associated with the immediate postictal state after maximal electroshock in freely moving rat. Epilepsia 2002, 43:336–341.

    Article  PubMed  Google Scholar 

  49. Cropp GJ, Manning GW: Electrocardiographic changes simulating myocardial ischaemia and infarction associated with spontaneous intracranial haemorrhage. Circulation 1960, 22:25–38.

    PubMed  CAS  Google Scholar 

  50. Shuster S: The electrocardiogram in subarachnoid haemorrhage. Br Heart J 1960, 22:316–320.

    PubMed  CAS  Google Scholar 

  51. Galloon S, Rees GA, Briscoe CE, et al.: Prospective study of electrocardiographic changes associated with subarachnoid haemorrhage. BJA 1972, 44:511–516.

    Article  PubMed  CAS  Google Scholar 

  52. Solenski NJ, Haley EC, Kassell NF, et al.: Medical complications of aneurysmal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Participants of the Multicenter Cooperative Aneurysm Study. Crit Care Med 1995, 2:1007–1017.

    Article  Google Scholar 

  53. Tung P, Kopelnik A, Banki N, et al.: Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke 2004, 35:548–551.

    Article  PubMed  Google Scholar 

  54. Deibert E, Barzilai B, Braverman AC, et al.: Clinical significance of elevated troponin I levels in patients with nontraumatic subarachnoid hemorrhage. J Neurosurg 2003, 98:741–746.

    PubMed  Google Scholar 

  55. Parekh N, Venkatesh B, Cross D, et al.: Cardiac troponin I predicts myocardial dysfunction in aneurysmal subarachnoid hemorrhage. J Am Coll Cardiol 2000, 36:1328–1335.

    Article  PubMed  CAS  Google Scholar 

  56. Takeno Y, Eno S, Hondo T, et al.: Pheochromocytoma with reversal of tako-tsubo-like transient left ventricular dysfunction: a case report. J Cardiol 2004, 43:281–287.

    PubMed  Google Scholar 

  57. Cupo P, Jurca M, Azeedo-Marques MM, et al.: Severe scorpion envenomation in Brazil. Clinical, laboratory and anatomopathological aspects. Rev Inst Med Trop Sao Paulo 1994, 36:67–76.

    PubMed  CAS  Google Scholar 

  58. Pilati CF, Clark RS, Gilloteaux J, et al.: Excessive sympathetic nervous system activity decreases myocardial contractility. Proc Soc Exp Biol Med 1990, 193:225–231.

    PubMed  CAS  Google Scholar 

  59. Kaye MP, McDonald RH, Randall WC: Systolic hypertension and subendocardial hemorrhages produced by electrical stimulation of the stellate ganglion. Circ Res 1961, 9:1164–1170.

    PubMed  CAS  Google Scholar 

  60. Simmons RL, Martin AM Jr, Heisterkamp CA 3rd, Ducker TB: Respiratory insufficiency in combat casualties. II. Pulmonary edema following head injury. Ann Surg 1969, 170:39–44.

    Article  PubMed  CAS  Google Scholar 

  61. Theodore J, Robin ED: Speculations on neurogenic pulmonary edema (NPE). Am Rev Respir Dis 1976, 113:405–411.

    PubMed  CAS  Google Scholar 

  62. Cruickshank JM, Neil-Dwyer G, Lane J: The effect of oral propranolol upon the ECG changes occurring in subarachnoid haemorrhage. Cardiovasc Res 1975, 9:236–245.

    PubMed  CAS  Google Scholar 

  63. Offerhaus L, van Gool J: Electrocardiographic changes and tissue catecholamines in experimental subarachnoid haemorrhage. Cardiovasc Res 1969, 3:433–440.

    Article  PubMed  CAS  Google Scholar 

  64. Mertes PM, Carteaux JP, Jaboin Y, et al.: Estimation of myocardial interstitial norepinephrine release after brain death using cardiac microdialysis. Transplantation 1994, 57:371–377.

    Article  PubMed  CAS  Google Scholar 

  65. Tung P, Kopelnik A, Banki N, et al.: Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke 2004, 35:548–551.

    Article  PubMed  Google Scholar 

  66. Lacy CR, Contrada RJ, Robbins ML, et al.: Coronary vasoconstriction induced by mental stress (simulated public speaking). Am J Cardiol 1995, 75:503–505.

    Article  PubMed  CAS  Google Scholar 

  67. Sadamatsu K, Tashiro H, Maehira N, Yamamoto K: Coronary microvascular abnormality in the reversible systolic dysfunction observed after noncardiac disease. Jpn Circ J 2000, 64:789–792.

    Article  PubMed  CAS  Google Scholar 

  68. Zaroff JG, Rordorf GA, Ogilvy CS, Picard MH: Regional patterns of left ventricular systolic dysfunction after subarachnoid hemorrhage: evidence for neurally mediated cardiac injury. J Am Soc Echocardiogr 2000, 13:774–779.

    Article  PubMed  CAS  Google Scholar 

  69. Pollick C, Cujec B, Parker S, Tator C: Left ventricular wall motion abnormalities in subarachnoid hemorrhage: an echocardiographic study. J Am Coll Cardiol 1988, 12:60–605.

    Google Scholar 

  70. Richards P: Pulmonary oedema and intracranial lesions. BMJ 1963, 5349:83–86.

    Article  Google Scholar 

  71. Paine R, Smith J, Howard F: Pulmonary oedema in patients dying with diseases of the central nervous system. JAMA 1952, 149:643–646.

    CAS  Google Scholar 

  72. Simmons RL, Martin AM, Heisterkamp CA, et al.: Respiratory insufficiency in combat casualties. II. Pulmonary edema following head injury. Ann Surg 1969, 170:39–44.

    Article  PubMed  CAS  Google Scholar 

  73. Fontes RB, Aguiar PH, Zanetti MV, et al.: Acute neurogenic pulmonary edema: case reports and literature review. J Neurosurg Anesthesiol 2003, 15:144–150.

    Article  PubMed  Google Scholar 

  74. Mishriki YY: Hypoglycemia-induced neurogenic-type pulmonary edema: an underrecognized association. Endocr Pract 2004, 10:429–431.

    PubMed  Google Scholar 

  75. Fontes RB, Aguiar PH, Zanetti MV, et al.: Acute neurogenic pulmonary edema: case reports and literature review. J Neurosurg Anesthesiol 2003, 15:144–150.

    Article  PubMed  Google Scholar 

  76. Theodore J, Robin ED: Speculations on neurogenic pulmonary edema. Am Rev Respir Dis 1976, 113:405–411.

    PubMed  CAS  Google Scholar 

  77. Bowers RE, McKeen CR, Park BE, et al.: Increased pulmonary vascular permeability follows intracranial hypertension in sheep. Am Rev Respir Dis 1979, 119:637–641.

    PubMed  CAS  Google Scholar 

  78. Simon RP, Bayne LL, Tranbaugh RF, et al.: Elevated pulmonary lymph flow and protein content during status epilepticus in sheep. J Appl Physiol 1982, 52:91–95.

    PubMed  CAS  Google Scholar 

  79. McClellan MD, Dauber IM, Weil JV: Elevated intracranial pressure increases pulmonary vascular permeability to protein. J Appl Physiol 1989, 67:1185–1191.

    PubMed  CAS  Google Scholar 

  80. Maron MB, Dawson CA: Pulmonary venoconstriction caused by elevated cerebrospinal fluid in the dog. J Appl Physiol 1980, 49:73–78.

    PubMed  CAS  Google Scholar 

  81. Johnston SC, Darragh TM, Simon RP: Postictal pulmonary edema requires pulmonary vascular pressure increases. Epilepsia 1996, 37:428–432.

    Article  PubMed  CAS  Google Scholar 

  82. Smith WS, Matthay MA: Evidence for a hydrostatic mechanism in human neurogenic pulmonary edema. Chest 1997, 111:1326–1333.

    PubMed  CAS  Google Scholar 

  83. Cruickshank JM, Neil-Dwyer G, Degaute JP, et al.: Reduction of stress/catecholamine-induced cardiac necrosis by beta 1-selective blockade. Lancet 1987, 2:585–589.

    Article  PubMed  CAS  Google Scholar 

  84. Sander D, Winbeck K, Klingelhofer J, et al.:: Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology 2001, 57:833–838.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grunsfeld, A., Fletcher, J.J. & Nathan, B.R. Cardiopulmonary complications of brain injury. Curr Neurol Neurosci Rep 5, 488–493 (2005). https://doi.org/10.1007/s11910-005-0039-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-005-0039-7

Keywords

Navigation