Skip to main content
Log in

Does Kidney Disease Cause Hypertension?

  • Pathogenesis of Hypertension (R Agarwal, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Hypertension complicates most cases of chronic kidney disease. While the prevalence and severity of hypertension increase as glomerular filtration rate falls, hypertension is often observed in patients with structural kidney disease while renal function is normal, in particular those with polycystic kidney disease or proteinuric glomerular diseases. On the other hand, even severe reductions in renal function may not result in hypertension, especially if there is effective control of extracellular fluid volume. Recent clinical and experimental data indicate that proteinuria may mediate sodium retention and hypertension via plasmin-mediated activation of the epithelial sodium channel. Current evidence supports the notion that chronic kidney disease is a cause of chronic hypertension, even in the absence of detectable changes in glomerular filtration rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens. 1988;1:335–47.

    Article  PubMed  CAS  Google Scholar 

  2. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med. 2003;348:101–8.

    Article  PubMed  Google Scholar 

  3. Rao MV, Qiu Y, Wang C, Bakris G. Hypertension and CKD: Kidney Early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES), 1999–2004. Am J Kidney Dis. 2008;51:S30–7.

    Article  PubMed  Google Scholar 

  4. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Chapter 1: definition and classification of CKD. Kidney Int Suppl. 2013;3:19–62.

    Google Scholar 

  5. Bidani AK, Mitchell KD, Schwartz MM, Navar LG, Lewis EJ. Absence of glomerular injury or nephron loss in a normotensive rat remnant kidney model. Kidney Int. 1990;38:28–38.

    Article  PubMed  CAS  Google Scholar 

  6. Adams LG, Polzin DJ, Osborne CA, O'Brien TD, Hostetter TH. Influence of dietary protein/calorie intake on renal morphology and function in cats with 5/6 nephrectomy. Lab Investig. 1994;70:347–57.

    PubMed  CAS  Google Scholar 

  7. Bourgoignie JJ, Gavellas G, Hwang KH, Disbrow MR, Sabnis SG, Antonovych TT. Renal function of baboons (Papio hamadryas) with a remnant kidney, and impact of different protein diets. Kidney Int Suppl. 1989;27:S86–90.

    PubMed  CAS  Google Scholar 

  8. Robertson JL, Goldschmidt M, Kronfeld DS, Tomaszewski JE, Hill GS, Bovee KC. Long-term renal responses to high dietary protein in dogs with 75 % nephrectomy. Kidney Int. 1986;29:511–9.

    Article  PubMed  CAS  Google Scholar 

  9. Houck CR. Effect of hydration and dehydration on hypertension in the chronic bilaterally nephrectomized dog. Am J Physiol. 1954;176:183–9.

    PubMed  CAS  Google Scholar 

  10. Kren S, Hostetter TH. The course of the remnant kidney model in mice. Kidney Int. 1999;56:333–7.

    Article  PubMed  CAS  Google Scholar 

  11. Griffin KA, Picken M, Bidani AK. Method of renal mass reduction is a critical modulator of subsequent hypertension and glomerular injury. J Am Soc Nephrol. 1994;4:2023–31.

    PubMed  CAS  Google Scholar 

  12. Ibrahim HN, Hostetter TH. The renin-aldosterone axis in two models of reduced renal mass in the rat. J Am Soc Nephrol. 1998;9:72–6.

    PubMed  CAS  Google Scholar 

  13. Ylitalo P, Hepp R, Mohring J, Gross F. Effects of varying sodium intake on blood pressure and renin-angiotensin system in subtotally nephrectomized rats. J Lab Clin Med. 1976;88:807–16.

    PubMed  CAS  Google Scholar 

  14. Merrill JP, Giordano C, Heetderks DR. The role of the kidney in human hypertension. I. Failure of hypertension to develop in the renoprival subject. Am J Med. 1961;31:931–40.

    Article  PubMed  CAS  Google Scholar 

  15. Santos SF, Peixoto AJ. Sodium balance in maintenance hemodialysis. Semin Dial. 2010;23:549–55.

    Article  PubMed  Google Scholar 

  16. Chan CT, Harvey PJ, Picton P, Pierratos A, Miller JA, Floras JS. Short-term blood pressure, noradrenergic, and vascular effects of nocturnal home hemodialysis. Hypertension. 2003;42:925–31.

    Article  PubMed  CAS  Google Scholar 

  17. Katzarski KS, Charra B, Luik AJ, Nisell J, Divino Filho JC, Leypoldt JK, et al. Fluid state and blood pressure control in patients treated with long and short haemodialysis. Nephrol Dial Transplant. 1999;14:369–75.

    Article  PubMed  CAS  Google Scholar 

  18. Boudville N, Prasad GV, Knoll G, Muirhead N, Thiessen-Philbrook H, Yang RC, et al. Meta–analysis: risk for hypertension in living kidney donors. Ann Intern Med. 2006;145:185–96.

    PubMed  Google Scholar 

  19. • Rodriguez-Gomez I, Wangensteen R, Perez-Abud R, Quesada A, Del Moral RG, Osuna A, et al. Long-term consequences of uninephrectomy in male and female rats. Hypertension. 2012;60:1458–63. Uninephrectomy results in salt-sensitive hypertension, especially in female animals.

    Article  PubMed  CAS  Google Scholar 

  20. Blumenfeld JD, Liu F, Laragh JH. Primary and secondary hypertension. In: Taal MW, Chertow GM, Marsden PA, Skorecki K, Yu AS, Brenner BM, editors. Brenner and Rector’s the kidney. 9th ed. Philadelphia: Elsevier Saunders; 2012. p. 1670–751.

    Chapter  Google Scholar 

  21. • Chapman AB, Stepniakowski K, Rahbari-Oskoui F. Hypertension in autosomal dominant polycystic kidney disease. Adv Chron Kidney Dis. 2010;17:153–63. Valuable review of mechanisms of hypertension in polycycstic kidney disease.

    Article  Google Scholar 

  22. Schrier RW. Renal volume, renin-angiotensin-aldosterone system, hypertension, and left ventricular hypertrophy in patients with autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2009;20:1888–93.

    Article  PubMed  Google Scholar 

  23. Morel N, Vandenberg G, Ahrabi AK, Caron N, Desjardins F, Balligand JL, et al. PKD1 haploinsufficiency is associated with altered vascular reactivity and abnormal calcium signaling in the mouse aorta. Pflugers Arch. 2009;457:845–56.

    Article  PubMed  CAS  Google Scholar 

  24. •• Brookes ZL, Ruff LJ, Upadhyay VS, Huang L, Prasad S, Solanky T, et al. Pkd2 mesenteric vessels exhibit a primary defect in endothelial dependent vasodilatation restored by rosiglitazone. Am J Physiol Heart Circ Physiol. 2012. Polycystin 2 haploinsufficiency results in endothelial dysfunction that can be ameliorated by rosiglitazone. This is a paper that not only focuses on mechanisms but also has potential treatment implications.

  25. Chin HJ, Ro H, Lee HJ, Na KY, Chae DW. The clinical significances of simple renal cyst: is it related to hypertension or renal dysfunction? Kidney Int. 2006;70:1468–73.

    Article  PubMed  CAS  Google Scholar 

  26. Luscher TF, Wanner C, Siegenthaler W, Vetter W. Simple renal cyst and hypertension: cause or coincidence? Clin Nephrol. 1986;26:91–5.

    PubMed  CAS  Google Scholar 

  27. Melo NC, Mundim JS, Costalonga EC, Lucon AM, Santello JL, Praxedes JN. Three cases of hypertension and renal arteriovenous fistula with a de novo fistula. Arq Bras Cardiol. 2009;92:e36–e38.

    Article  PubMed  Google Scholar 

  28. Smith MC, Lazar A, Rahman M. Hypertension associated with renal parenchymal disease. In: Schrier RW, editor. Diseases of the kidney and urinary tract. 8th ed. Philadelphia: Lippincott, Williams and Wilkins; 2007. p. 1238–64.

    Google Scholar 

  29. Sterns RH, Rabinowitz R, Segal AJ, Spitzer RM. ‘Page kidney’. Hypertension caused by chronic subcapsular hematoma. Arch Intern Med. 1985;145:169–71.

    Article  PubMed  CAS  Google Scholar 

  30. Fidan K, Kandur Y, Buyukkaragoz B, Akdemir UO, Soylemezoglu O. Hypertension in pediatric patients with renal scarring in association with vesicoureteral reflux. Urology. 2012.

  31. • Chughtai HL, Morgan TM, Rocco M, Stacey B, Brinkley TE, Ding J, et al. Renal sinus fat and poor blood pressure control in middle-aged and elderly individuals at risk for cardiovascular events. Hypertension. 2010;56:901–6. Fat accumulation in the renal sinuses is associated with increased prevalent hypertension and lower GFR.

    Article  PubMed  CAS  Google Scholar 

  32. • Foster MC, Hwang SJ, Porter SA, Massaro JM, Hoffmann U, Fox CS. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension. 2011;58:784–90. Fat accumulation in the renal sinuses is associated with increased prevalent hypertension and lower GFR.

    Article  PubMed  CAS  Google Scholar 

  33. Burnett Jr JC, Knox FG. Renal interstitial pressure and sodium excretion during renal vein constriction. Am J Physiol. 1980;238:F279–82.

    PubMed  CAS  Google Scholar 

  34. Nolasco F, Cameron JS, Heywood EF, Hicks J, Ogg C, Williams DG. Adult-onset minimal change nephrotic syndrome: a long-term follow-up. Kidney Int. 1986;29:1215–23.

    Article  PubMed  CAS  Google Scholar 

  35. • Agarwal R, Light RP. GFR, proteinuria and circadian blood pressure. Nephrol Dial Transplant. 2009;24:2400–6. Low GFR and proteinuria have separate effects on BP levels and circadian BP rhythm. Proteinuria is associated with the higher BP levels and more prominent blunting of the circadian rhythm than low GFR. The presence of both is synergistic.

    Article  PubMed  CAS  Google Scholar 

  36. •• Svenningsen P, Friis UG, Versland JB, Buhl KB, Frederiksen BM, Andersen H, et al. Mechanisms of renal NaCl retention in proteinuric disease. Acta Physiol (Oxf). 2012. Up-to-date review on the recent advances related to the role of plasmin in stimulating ENaC activity in proteinuric patients (including the important original data described in references 37 and 38).

  37. •• Svenningsen P, Bistrup C, Friis UG, Bertog M, Haerteis S, Krueger B, et al. Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol. 2009;20:299–310. As above.

    Article  PubMed  CAS  Google Scholar 

  38. •• Buhl KB, Friis UG, Svenningsen P, Gulaveerasingam A, Ovesen P, Frederiksen-Moller B, et al. Urinary plasmin activates collecting duct ENaC current in preeclampsia. Hypertension. 2012;60:1346–51. As above.

    Article  PubMed  CAS  Google Scholar 

  39. Nieuwhof C, Doorenbos C, Grave W, de Heer F, de Leeuw P, Zeppenfeldt E, et al. A prospective study of the natural history of idiopathic non-proteinuric hematuria. Kidney Int. 1996;49:222–5.

    Article  PubMed  CAS  Google Scholar 

  40. Szeto CC, Mac-Moune Lai F, Kwan BC, Leung CB, Choi PC, Pang WF, et al. The width of the basement membrane does not influence clinical presentation or outcome of thin glomerular basement membrane disease with persistent hematuria. Kidney Int. 2010;78:1041–6.

    Article  PubMed  Google Scholar 

  41. van Paassen P, van Breda Vriesman PJ, van Rie H, Tervaert JW. Signs and symptoms of thin basement membrane nephropathy: a prospective regional study on primary glomerular disease–The Limburg Renal Registry. Kidney Int. 2004;66:909–13.

    Article  PubMed  Google Scholar 

  42. Frasca GM, Onetti-Muda A, Mari F, Longo I, Scala E, Pescucci C, et al. Thin glomerular basement membrane disease: clinical significance of a morphological diagnosis—a collaborative study of the Italian Renal Immunopathology Group. Nephrol Dial Transplant. 2005;20:545–51.

    Article  PubMed  Google Scholar 

  43. Johnson RJ, Herrera-Acosta J, Schreiner GF, Rodriguez-Iturbe B. Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. N Engl J Med. 2002;346:913–23.

    Article  PubMed  CAS  Google Scholar 

  44. Rodriguez-Iturbe B, Johnson RJ. The role of renal microvascular disease and interstitial inflammation in salt-sensitive hypertension. Hypertens Res. 2010;33:975–80.

    Article  PubMed  Google Scholar 

  45. Brantsma AH, Bakker SJ, de Zeeuw D, de Jong PE, Gansevoort RT. Urinary albumin excretion as a predictor of the development of hypertension in the general population. J Am Soc Nephrol. 2006;17:331–5.

    PubMed  CAS  Google Scholar 

  46. Forman JP, Fisher ND, Schopick EL, Curhan GC. Higher levels of albuminuria within the normal range predict incident hypertension. J Am Soc Nephrol. 2008;19:1983–8.

    Article  PubMed  Google Scholar 

  47. Jessani S, Levey AS, Chaturvedi N, Jafar TH. High normal levels of albuminuria and risk of hypertension in Indo-Asian population. Nephrol Dial Transplant. 2012;27 Suppl 3:iii58–64.

    Article  PubMed  Google Scholar 

  48. Palatini P, Mormino P, Mos L, Mazzer A, Dorigatti F, Zanata G, et al. Microalbuminuria, renal function and development of sustained hypertension: a longitudinal study in the early stage of hypertension. J Hypertens. 2005;23:175–82.

    Article  PubMed  CAS  Google Scholar 

  49. Wang TJ, Evans JC, Meigs JB, Rifai N, Fox CS, D'Agostino RB, et al. Low-grade albuminuria and the risks of hypertension and blood pressure progression. Circulation. 2005;111:1370–6.

    Article  PubMed  CAS  Google Scholar 

  50. Wang TJ, Gona P, Larson MG, Levy D, Benjamin EJ, Tofler GH, et al. Multiple biomarkers and the risk of incident hypertension. Hypertension. 2007;49:432–8.

    Article  PubMed  CAS  Google Scholar 

  51. Glassock RJ. Is the presence of microalbuminuria a relevant marker of kidney disease? Curr Hypertens Rep. 2010;12:364–8.

    Article  PubMed  CAS  Google Scholar 

  52. Weir MR. Microalbuminuria and cardiovascular disease. Clin J Am Soc Nephrol. 2007;2:581–90.

    Article  PubMed  Google Scholar 

  53. Nicholl DD, Hemmelgarn BR, Turin TC, MacRae JM, Muruve DA, Sola DY, et al. Increased urinary protein excretion in the “normal” range is associated with increased renin-angiotensin system activity. Am J Physiol Ren Physiol. 2012;302:F526–32.

    Article  CAS  Google Scholar 

  54. Bigazzi R, Bianchi S, Baldari D, Sgherri G, Baldari G, Campese VM. Microalbuminuria in salt-sensitive patients. A marker for renal and cardiovascular risk factors. Hypertension. 1994;23:195–9.

    Article  PubMed  CAS  Google Scholar 

  55. Warnock DG. Liddle syndrome: genetics and mechanisms of Na + channel defects. Am J Med Sci. 2001;322:302–7.

    Article  PubMed  CAS  Google Scholar 

  56. Saha C, Eckert GJ, Ambrosius WT, Chun TY, Wagner MA, Zhao Q, et al. Improvement in blood pressure with inhibition of the epithelial sodium channel in blacks with hypertension. Hypertension. 2005;46:481–7.

    Article  PubMed  CAS  Google Scholar 

  57. Hoefnagels WH, Drayer JI, Smals AG, Kloppenborg PW. Spironolactone and amiloride in hypertensive patients with and without aldosterone excess. Clin Pharmacol Ther. 1980;27:317–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by resources and use of facilities at the VA Connecticut Health Care System, West Haven, CT.

Disclosures

A.J. Peixoto: none; M. Orias: payment for lectures including service on speakers bureau from Novartis; G.V. Desir: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo J. Peixoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peixoto, A.J., Orias, M. & Desir, G.V. Does Kidney Disease Cause Hypertension?. Curr Hypertens Rep 15, 89–94 (2013). https://doi.org/10.1007/s11906-013-0327-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0327-6

Keywords

Navigation