Skip to main content

Advertisement

Log in

Interventions for Neurocognitive Dysfunction

  • HIV Pathogenesis and Treatment (AL Landay and N Utay, Section Editors)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This study aimed to evaluate current barriers to HIV cure strategies and interventions for neurocognitive dysfunction with a particular focus on recent advancements over the last 3 years.

Recent Findings

Optimal anti-retroviral therapy (ART) poses challenges to minimise neurotoxicity, whilst ensuring blood-brain barrier penetration and minimising the risk of cerebrovascular disease. CSF biomarkers, BCL11B and neurofilament light chain may be implicated with a neuroinflammatory cascade leading to cognitive impairment. Diagnostic imaging with diffusion tensor imaging and resting-state fMRI show promise in future diagnosis and monitoring of HAND.

Summary

The introduction of ART has resulted in a dramatic decline in HIV-associated dementia. Despite this reduction, milder forms of HIV-associated neurocognitive disorder (HAND) are still prevalent and are clinically significant. The central nervous system (CNS) has been recognised as a probable reservoir and sanctuary for HIV, representing a significant barrier to management interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance; •• Of major importance

  1. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gisslen M, Price RW, Nilsson S. The definition of HIV-associated neurocognitive disorders: are we overestimating the real prevalence? BMC Infect Dis. 2011;11:356.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Heaton RK, Clifford DB, Franklin Jr DR, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology. 2010;75(23):2087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lescure FX, Omland LH, Engsig FN, Roed C, Gerstoft J, Pialoux G, et al. Incidence and impact on mortality of severe neurocognitive disorders in persons with and without HIV infection: a Danish nationwide cohort study. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2011;52(2):235–43.

    Article  Google Scholar 

  5. Cysique LA, Brew BJ. Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. Journal of neurovirology. 2011;17(2):176–83.

    Article  PubMed  Google Scholar 

  6. Simioni S, Cavassini M, Annoni JM, Rimbault Abraham A, Bourquin I, Schiffer V, et al. Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS. 2010;24(9):1243–50.

    PubMed  Google Scholar 

  7. Grant I, Franklin Jr DR, Deutsch R, Woods SP, Vaida F, Ellis RJ, et al. Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology. 2014;82(23):2055–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity. 2012;37(3):377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, et al. Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology. 1992;42(9):1736–9.

    Article  CAS  PubMed  Google Scholar 

  10. Liu NQ, Lossinsky AS, Popik W, Li X, Gujuluva C, Kriederman B, et al. Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J Virol. 2002;76(13):6689–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brew BJ, Gray L, Lewin S, Churchill M. Is specific HIV eradication from the brain possible or needed? Expert Opin Biol Ther. 2013;13(3):403–9.

    Article  PubMed  Google Scholar 

  12. Blankson JN, Persaud D, Siliciano RF. The challenge of viral reservoirs in HIV-1 infection. Annu Rev Med. 2002;53:557–93.

    Article  CAS  PubMed  Google Scholar 

  13. •• Gray LR, Roche M, Flynn JK, Wesselingh SL, Gorry PR, Churchill MJ. Is the central nervous system a reservoir of HIV-1? Curr Opin HIV AIDS. 2014;9(6):552–8. This review summarised the evidence supporting the CNS as a reservoir of HIV

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Churchill MJ, Gorry PR, Cowley D, Lal L, Sonza S, Purcell DF, et al. Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. Journal of neurovirology. 2006;12(2):146–52.

    Article  PubMed  Google Scholar 

  15. Thompson KA, Cherry CL, Bell JE, McLean CA. Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. Am J Pathol. 2011;179(4):1623–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koppensteiner H, Brack-Werner R, Schindler M. Macrophages and their relevance in human immunodeficiency virus type I infection. Retrovirology. 2012;9:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Colodner KJ, Montana RA, Anthony DC, Folkerth RD, De Girolami U, Feany MB. Proliferative potential of human astrocytes. J Neuropathol Exp Neurol. 2005;64(2):163–9.

    Article  PubMed  Google Scholar 

  18. Soulet D, Rivest S. Bone-marrow-derived microglia: myth or reality? Curr Opin Pharmacol. 2008;8(4):508–18.

    Article  CAS  PubMed  Google Scholar 

  19. Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, et al. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol. 2009;66(2):253–8.

    Article  PubMed  Google Scholar 

  20. Eden A, Fuchs D, Hagberg L, Nilsson S, Spudich S, Svennerholm B, et al. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. The Journal of infectious diseases. 2010;202(12):1819–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. •• Gray LR, Cowley D, Welsh C, Lu HK, Brew BJ, Lewin SR, et al. CNS-specific regulatory elements in brain-derived HIV-1 strains affect responses to latency-reversing agents with implications for cure strategies. Mol Psychiatry. 2016;21(4):574–84. This article demonstrated the unique transcriptional regulatory mechanisms of CNS HIV and the implications of latency reversing agents for HIV cure

    Article  CAS  PubMed  Google Scholar 

  22. Gorry PR, Ong C, Thorpe J, Bannwarth S, Thompson KA, Gatignol A, et al. Astrocyte infection by HIV-1: mechanisms of restricted virus replication, and role in the pathogenesis of HIV-1-associated dementia. Curr HIV Res. 2003;1(4):463–73.

    Article  CAS  PubMed  Google Scholar 

  23. Carroll-Anzinger D, Al-Harthi L. Gamma interferon primes productive human immunodeficiency virus infection in astrocytes. J Virol. 2006;80(1):541–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gray LR, Brew BJ, Churchill MJ. Strategies to target HIV-1 in the central nervous system. Curr Opin HIV AIDS. 2016;11(4):371–5.

    Article  CAS  PubMed  Google Scholar 

  25. Gama L, Abreu CM, Shirk EN, Price SL, Li M, Laird GM, et al. Reactivation of SIV reservoirs in the brain of virally suppressed macaques. Aids. 2016.

  26. Eugenin EA, Clements JE, Zink MC, Berman JW. Human immunodeficiency virus infection of human astrocytes disrupts blood-brain barrier integrity by a gap junction-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2011;31(26):9456–65.

    Article  CAS  Google Scholar 

  27. Eugenin EA, Berman JW. Cytochrome C dysregulation induced by HIV infection of astrocytes results in bystander apoptosis of uninfected astrocytes by an IP3 and calcium-dependent mechanism. J Neurochem. 2013;127(5):644–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Norgren N, Rosengren L, Stigbrand T. Elevated neurofilament levels in neurological diseases. Brain Res. 2003;987(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  29. • Jessen Krut J, Mellberg T, Price RW, Hagberg L, Fuchs D, Rosengren L, et al. Elevated neurofilament levels in neurological diseases. PLoS One. 2014;9(2):e88591. This article showed that CSF levels of NFL are significantly increased in HIV dementia patients and decrease with the commencement of ART

    Article  PubMed  PubMed Central  Google Scholar 

  30. Desplats P, Dumaop W, Smith D, Adame A, Everall I, Letendre S, et al. Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology. 2013;80(15):1415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nabha L, Duong L, Timpone J. HIV-associated neurocognitive disorders: perspective on management strategies. Drugs. 2013;73(9):893–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC, et al. Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol. 2008;65(1):65–70.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cusini A, Vernazza PL, Yerly S, Decosterd LA, Ledergerber B, Fux CA, et al. Higher CNS penetration-effectiveness of long-term combination antiretroviral therapy is associated with better HIV-1 viral suppression in cerebrospinal fluid. J Acquir Immune Defic Syndr. 2013;62(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  34. Ellis RJ, Letendre S, Vaida F, Haubrich R, Heaton RK, Sacktor N, et al. Randomized trial of central nervous system-targeted antiretrovirals for HIV-associated neurocognitive disorder. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2014;58(7):1015–22.

    Article  CAS  Google Scholar 

  35. Brew BJ, Letendre SL. Biomarkers of HIV related central nervous system disease. International review of psychiatry. 2008;20(1):73–88.

    Article  PubMed  Google Scholar 

  36. Gray LR, Tachedjian G, Ellett AM, Roche MJ, Cheng WJ, Guillemin GJ, et al. The NRTIs lamivudine, stavudine and zidovudine have reduced HIV-1 inhibitory activity in astrocytes. PLoS One. 2013;8(4):e62196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ene L, Duiculescu D, Ruta SM. How much do antiretroviral drugs penetrate into the central nervous system? Journal of medicine and life. 2011;4(4):432–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen LF, Hoy J, Lewin SR. Ten years of highly active antiretroviral therapy for HIV infection. Med J Aust. 2007;186(3):146–51.

    PubMed  Google Scholar 

  39. Gimenez F, Fernandez C, Mabondzo A. Transport of HIV protease inhibitors through the blood-brain barrier and interactions with the efflux proteins, P-glycoprotein and multidrug resistance proteins. J Acquir Immune Defic Syndr. 2004;36(2):649–58.

    Article  CAS  PubMed  Google Scholar 

  40. Letendre SL, Mills AM, Tashima KT, Thomas DA, Min SS, Chen S, et al. ING116070: a study of the pharmacokinetics and antiviral activity of dolutegravir in cerebrospinal fluid in HIV-1-infected, antiretroviral therapy-naive subjects. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2014;59(7):1032–7.

    Article  CAS  Google Scholar 

  41. Gates TM, Cysique LA, Siefried KJ, Chaganti J, Moffat KJ, Brew BJ. Maraviroc-intensified combined antiretroviral therapy improves cognition in virally suppressed HIV-associated neurocognitive disorder. AIDS. 2016;30(4):591–600.

    Article  CAS  PubMed  Google Scholar 

  42. Nath A. Neurologic complications of human immunodeficiency virus infection. Continuum. 2015;21(6 Neuroinfectious Disease):1557–76.

    PubMed  Google Scholar 

  43. Walker NF, Scriven J, Meintjes G, Wilkinson RJ. Immune reconstitution inflammatory syndrome in HIV-infected patients. Hiv/Aids. 2015;7:49–64.

    PubMed  PubMed Central  Google Scholar 

  44. Hong S, Banks WA. Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun. 2015;45:1–12.

    Article  CAS  PubMed  Google Scholar 

  45. McCombe JA, Auer RN, Maingat FG, Houston S, Gill MJ, Power C. Neurologic immune reconstitution inflammatory syndrome in HIV/AIDS: outcome and epidemiology. Neurology. 2009;72(9):835–41.

    Article  CAS  PubMed  Google Scholar 

  46. Grant PM, Komarow L, Andersen J, Sereti I, Pahwa S, Lederman MM, et al. Risk factor analyses for immune reconstitution inflammatory syndrome in a randomized study of early vs. deferred ART during an opportunistic infection. PLoS One. 2010;5(7):e11416.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zolopa A, Andersen J, Powderly W, Sanchez A, Sanne I, Suckow C, et al. Early antiretroviral therapy reduces AIDS progression/death in individuals with acute opportunistic infections: a multicenter randomized strategy trial. PLoS One. 2009;4(5):e5575.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Boulware DR, Meya DB, Muzoora C, Rolfes MA, Huppler Hullsiek K, Musubire A, et al. Timing of antiretroviral therapy after diagnosis of cryptococcal meningitis. N Engl J Med. 2014;370(26):2487–98.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dheda K, Lampe FC, Johnson MA, Lipman MC. Outcome of HIV-associated tuberculosis in the era of highly active antiretroviral therapy. The Journal of infectious diseases. 2004;190(9):1670–6.

    Article  PubMed  Google Scholar 

  50. Burman WJ. Issues in the management of HIV-related tuberculosis. Clin Chest Med. 2005;26(2):283–94. vi-vii

    Article  PubMed  Google Scholar 

  51. Johnson T, Nath A. Immune reconstitution inflammatory syndrome and the central nervous system. Curr Opin Neurol. 2011;24(3):284–90.

    Article  CAS  PubMed  Google Scholar 

  52. Murdoch DM, Venter WD, Feldman C, Van Rie A. Incidence and risk factors for the immune reconstitution inflammatory syndrome in HIV patients in South Africa: a prospective study. AIDS. 2008;22(5):601–10.

    Article  CAS  PubMed  Google Scholar 

  53. Venkataramana A, Pardo CA, McArthur JC, Kerr DA, Irani DN, Griffin JW, et al. Immune reconstitution inflammatory syndrome in the CNS of HIV-infected patients. Neurology. 2006;67(3):383–8.

    Article  CAS  PubMed  Google Scholar 

  54. Pavlovic D, Patera AC, Nyberg F, Gerber M, Liu M. Progressive multifocal leukeoncephalopathy C. Progressive multifocal leukoencephalopathy: current treatment options and future perspectives. Ther Adv Neurol Disord. 2015;8(6):255–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tan K, Roda R, Ostrow L, McArthur J, Nath A. PML-IRIS in patients with HIV infection: clinical manifestations and treatment with steroids. Neurology. 2009;72(17):1458–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Masur H, Brooks JT, Benson CA, Holmes KK, Pau AK, Kaplan JE, et al. Prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: updated guidelines from the Centers for Disease Control and Prevention, National Institutes of Health, and HIV Medicine Association of the Infectious Diseases Society of America. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2014;58(9):1308–11.

    Article  Google Scholar 

  57. Sacktor N, Schifitto G, McDermott MP, Marder K, McArthur JC, Kieburtz K. Transdermal selegiline in HIV-associated cognitive impairment: pilot, placebo-controlled study. Neurology. 2000;54(1):233–5.

    Article  CAS  PubMed  Google Scholar 

  58. Schifitto G, Yiannoutsos CT, Ernst T, Navia BA, Nath A, Sacktor N, et al. Selegiline and oxidative stress in HIV-associated cognitive impairment. Neurology. 2009;73(23):1975–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sacktor N, Miyahara S, Evans S, Schifitto G, Cohen B, Haughey N, et al. Impact of minocycline on cerebrospinal fluid markers of oxidative stress, neuronal injury, and inflammation in HIV-seropositive individuals with cognitive impairment. Journal of neurovirology. 2014;20(6):620–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao Y, Navia BA, Marra CM, Singer EJ, Chang L, Berger J, et al. Memantine for AIDS dementia complex: open-label report of ACTG 301. HIV clinical trials. 2010;11(1):59–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Navia BA, Dafni U, Simpson D, Tucker T, Singer E, McArthur JC, et al. A phase I/II trial of nimodipine for HIV-related neurologic complications. Neurology. 1998;51(1):221–8.

    Article  CAS  PubMed  Google Scholar 

  62. Marra CM, Zhao Y, Clifford DB, Letendre S, Evans S, Henry K, et al. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS. 2009;23(11):1359–66.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhang Y, Wang M, Li H, Zhang H, Shi Y, Wei F, et al. Accumulation of nuclear and mitochondrial DNA damage in the frontal cortex cells of patients with HIV-associated neurocognitive disorders. Brain Res. 2012;1458:1–11.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Y, Song F, Gao Z, Ding W, Qiao L, Yang S, et al. Long-term exposure of mice to nucleoside analogues disrupts mitochondrial DNA maintenance in cortical neurons. PLoS One. 2014;9(1):e85637.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Decloedt EH, Maartens G. Neuronal toxicity of efavirenz: a systematic review. Expert Opin Drug Saf. 2013;12(6):841–6.

    Article  CAS  PubMed  Google Scholar 

  66. Ma Q, Vaida F, Wong J, Sanders CA, Kao YT, Croteau D, et al. Long-term efavirenz use is associated with worse neurocognitive functioning in HIV-infected patients. Journal of neurovirology. 2016;22(2):170–8.

    Article  PubMed  Google Scholar 

  67. Waters L, Fisher M, Winston A, Higgs C, Hadley W, Garvey L, et al. A phase IV, double-blind, multicentre, randomized, placebo-controlled, pilot study to assess the feasibility of switching individuals receiving efavirenz with continuing central nervous system adverse events to etravirine. AIDS. 2011;25(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  68. Nguyen A, Calmy A, Delhumeau C, Mercier I, Cavassini M, Mello AF, et al. A randomized cross-over study to compare raltegravir and efavirenz (SWITCH-ER study). AIDS. 2011;25(12):1481–7.

    Article  CAS  PubMed  Google Scholar 

  69. • Brew BJ, Chan P. Update on HIV dementia and HIV-associated neurocognitive disorders. Current neurology and neuroscience reports. 2014;14(8):468. This review article discussed the potential of MRS studies in diagnosing HAND

    Article  PubMed  Google Scholar 

  70. Cysique LA, Moffat K, Moore DM, Lane TA, Davies NW, Carr A, et al. HIV, vascular and aging injuries in the brain of clinically stable HIV-infected adults: a (1)H MRS study. PLoS One. 2013;8(4):e61738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Filippi CG, Ulug AM, Ryan E, Ferrando SJ, van Gorp W. Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. AJNR Am J Neuroradiol. 2001;22(2):277–83.

    CAS  PubMed  Google Scholar 

  72. Pfefferbaum A, Rosenbloom MJ, Rohlfing T, Kemper CA, Deresinski S, Sullivan EV. Frontostriatal fiber bundle compromise in HIV infection without dementia. AIDS. 2009;23(15):1977–85.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wu Y, Storey P, Cohen BA, Epstein LG, Edelman RR, Ragin AB. Diffusion alterations in corpus callosum of patients with HIV. AJNR Am J Neuroradiol. 2006;27(3):656–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen Y, An H, Zhu H, Stone T, Smith JK, Hall C, et al. White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients. NeuroImage. 2009;47(4):1154–62.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhu T, Zhong J, Hu R, Tivarus M, Ekholm S, Harezlak J, et al. Patterns of white matter injury in HIV infection after partial immune reconstitution: a DTI tract-based spatial statistics study. Journal of neurovirology. 2013;19(1):10–23.

    Article  PubMed  Google Scholar 

  76. Wright PW, Heaps JM, Shimony JS, Thomas JB, Ances BM. The effects of HIV and combination antiretroviral therapy on white matter integrity. AIDS. 2012;26(12):1501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Melrose RJ, Tinaz S, Castelo JM, Courtney MG, Stern CE. Compromised fronto-striatal functioning in HIV: an fMRI investigation of semantic event sequencing. Behav Brain Res. 2008;188(2):337–47.

    Article  PubMed  Google Scholar 

  78. Ances BM, Roc AC, Wang J, Korczykowski M, Okawa J, Stern J, et al. Caudate blood flow and volume are reduced in HIV+ neurocognitively impaired patients. Neurology. 2006;66(6):862–6.

    Article  CAS  PubMed  Google Scholar 

  79. Ann HW, Jun S, Shin NY, Han S, Ahn JY, Ahn MY, et al. Characteristics of resting-state functional connectivity in HIV-associated neurocognitive disorder. PLoS One. 2016;11(4):e0153493.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Erratum: Incidence, morbidity, mortality, and prevalence of diabetes in Denmark, 2000–2011: results from the Diabetes Impact Study 2013 [Corrigendum]. Clinical epidemiology. 2016;8:7.

  81. Worm SW, Sabin C, Weber R, Reiss P, El-Sadr W, Dabis F, et al. Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: the data collection on adverse events of anti-HIV drugs (D:A:D) study. The Journal of infectious diseases. 2010;201(3):318–30.

    Article  CAS  PubMed  Google Scholar 

  82. Grunfeld C. Dyslipidemia and its treatment in HIV infection. Topics in HIV medicine : a publication of the International AIDS Society, USA. 2010;18(3):112–8.

    Google Scholar 

  83. Zanni MV, Schouten J, Grinspoon SK, Reiss P. Risk of coronary heart disease in patients with HIV infection. Nat Rev Cardiol. 2014;11(12):728–41.

    Article  CAS  PubMed  Google Scholar 

  84. Schouten J, Wit FW, Stolte IG, Kootstra NA, van der Valk M, Geerlings SE, et al. Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals: the AGEhIV cohort study. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2014;59(12):1787–97.

    Article  Google Scholar 

  85. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. The Lancet Neurology. 2010;9(7):689–701.

    Article  PubMed  Google Scholar 

  86. • Su T, Wit FW, Caan MW, Schouten J, Prins M, Geurtsen GJ, et al. White matter hyperintensities in relation to cognition in HIV-infected men with sustained suppressed viral load on combination antiretroviral therapy. AIDS. 2016;30(15):2329–39. This study found that the degree of periventricular MRI white matter hyperintensities correlated with degree of cognitive impairment

    Article  CAS  PubMed  Google Scholar 

  87. Wright EJ, Grund B, Robertson K, Brew BJ, Roediger M, Bain MP, et al. Cardiovascular risk factors associated with lower baseline cognitive performance in HIV-positive persons. Neurology. 2010;75(10):864–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Edagwa BJ, Zhou T, McMillan JM, Liu XM, Gendelman HE. Development of HIV reservoir targeted long acting nanoformulated antiretroviral therapies. Curr Med Chem. 2014;21(36):4186–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Roy U, Rodriguez J, Barber P, das Neves J, Sarmento B, Nair M. The potential of HIV-1 nanotherapeutics: from in vitro studies to clinical trials. Nanomedicine. 2015;10(24):3597–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Morlese JF, Qazi NA, Gazzard BG, Nelson MR. Nevirapine-induced neuropsychiatric complications, a class effect of non-nucleoside reverse transcriptase inhibitors? AIDS. 2002;16(13):1840–1.

    Article  PubMed  Google Scholar 

  91. Katlama C, Clotet B, Mills A, Trottier B, Molina JM, Grinsztejn B, et al. Efficacy and safety of etravirine at week 96 in treatment-experienced HIV type-1-infected patients in the DUET-1 and DUET-2 trials. Antivir Ther. 2010;15(7):1045–52.

    Article  CAS  PubMed  Google Scholar 

  92. Allavena C, Le Moal G, Michau C, Chiffoleau A, Raffi F. Neuropsychiatric adverse events after switching from an antiretroviral regimen containing efavirenz without tenofovir to an efavirenz regimen containing tenofovir: a report of nine cases. Antivir Ther. 2006;11(2):263–5.

    PubMed  Google Scholar 

  93. Foster R, Taylor C, Everall IP. More on abacavir-induced neuropsychiatric reactions. AIDS. 2004;18(18):2449.

    PubMed  Google Scholar 

  94. Benson CA, van der Horst C, Lamarca A, Haas DW, McDonald CK, Steinhart CR, et al. A randomized study of emtricitabine and lamivudine in stably suppressed patients with HIV. AIDS. 2004;18(17):2269–76.

    Article  CAS  PubMed  Google Scholar 

  95. Fischl MA, Richman DD, Hansen N, Collier AC, Carey JT, Para MF, et al. The safety and efficacy of zidovudine (AZT) in the treatment of subjects with mildly symptomatic human immunodeficiency virus type 1 (HIV) infection. A double-blind, placebo-controlled trial. The AIDS Clinical Trials Group. Ann Intern Med. 1990;112(10):727–37.

    Article  CAS  PubMed  Google Scholar 

  96. Madruga JV, Berger D, McMurchie M, Suter F, Banhegyi D, Ruxrungtham K, et al. Efficacy and safety of darunavir-ritonavir compared with that of lopinavir-ritonavir at 48 weeks in treatment-experienced, HIV-infected patients in TITAN: a randomised controlled phase III trial. Lancet. 2007;370(9581):49–58.

    Article  CAS  PubMed  Google Scholar 

  97. Rutstein RM, Samson P, Fenton T, Fletcher CV, Kiser JJ, Mofenson LM, et al. Long-term safety and efficacy of atazanavir-based therapy in HIV-infected infants, children and adolescents: the pediatric AIDS Clinical Trials Group protocol 1020A. Pediatr Infect Dis J. 2015;34(2):162–7.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Steigbigel RT, Cooper DA, Teppler H, Eron JJ, Gatell JM, Kumar PN, et al. Long-term efficacy and safety of raltegravir combined with optimized background therapy in treatment-experienced patients with drug-resistant HIV infection: week 96 results of the BENCHMRK 1 and 2 phase III trials. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2010;50(4):605–12.

    Article  CAS  Google Scholar 

  99. Raffi F, Rachlis A, Stellbrink HJ, Hardy WD, Torti C, Orkin C, et al. Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study. Lancet. 2013;381(9868):735–43.

    Article  CAS  PubMed  Google Scholar 

  100. Lalezari JP, Henry K, O’Hearn M, Montaner JS, Piliero PJ, Trottier B, et al. Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in north and south America. N Engl J Med. 2003;348(22):2175–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Brew.

Ethics declarations

Conflict of Interest

Jacqueline Ellero, Michal Lubomski, and Bruce Brew declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellero, J., Lubomski, M. & Brew, B. Interventions for Neurocognitive Dysfunction. Curr HIV/AIDS Rep 14, 8–16 (2017). https://doi.org/10.1007/s11904-017-0346-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-017-0346-z

Keywords

Navigation